Complex Analysis Qualifying Exam 2019 Fall Committee: Valery Alexeev, Benjamin Bakker and Jingzhi Tie

- 1. Show that $\int_0^\infty \frac{x^{a-1}}{1+x^n} dx = \frac{\pi}{n \sin \frac{a\pi}{n}}$ using complex analysis, 0 < a < n. Here n is a positive integer.
- 2. Prove that the distinct complex numbers z_1 , z_2 and z_3 are the vertices of an equilateral triangle if and only if

$$z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1.$$

3. Let γ be piecewise smooth simple closed curve with interior Ω_1 and exterior Ω_2 . Assume f'(z) exists in an open set containing γ and Ω_2 and $\lim_{z\to\infty} f(z) = A$. Show that

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi = \begin{cases} A, & \text{if } z \in \Omega_1, \\ -f(z) + A, & \text{if } z \in \Omega_2 \end{cases}$$

- 4. Let $f: \mathbb{C} \to \mathbb{C}$ be an injective analytic (also called univalent) function. Show that there exist complex numbers $a \neq 0$ and b such that f(z) = az + b.
- 5. Find a conformal map from $D=\{z: |z|<1, |z-1/2|>1/2\}$ to the unit disk $\Delta=\{z: |z|<1\}.$
- 6. A holomorphic mapping $f: U \to V$ is a local bijection on U if for every $z \in U$ there exists an open disc $D \subset U$ centered at z so that $f: D \to f(D)$ is a bijection. Prove that a holomorphic map $f: U \to V$ is a local bijection if and only if $f'(z) \neq 0$ for all $z \in U$.