Complex Analysis Preliminary Exam

Fall 1994

- 1) Evaluate the following:
 - a) $\int_C \frac{e^z}{z^2 + 1} dz$ where C is the circle of radius 2 centered at 0, oriented counter clockwise.
 - b) $\int_0^\infty \frac{x \sin x}{(z^2+4)^2} dx.$
- 2) Give the Laurent expansion for $f(z) = \frac{(z^2-1)}{(z+2)(z+3)}$ in the region 2 < |z| < 3.
- 3) Let $f_n(z) = ze^{-\frac{1}{2}n^2z^2}$. Show this sequence of functions is uniformly convergent on the real axis but is not uniformly convergent on any closed ball, B(0,r), centered at 0 with radius r.
- 4.) Let $\lambda > 1$. How many roots does $z + e^{-z} = \lambda$ have in the right half plane?
- 5) a) Find a conformal map from the infinite strip 0 < imz < 1 onto the semi-infinite strip $\frac{-\pi}{2} < \text{Rez } < \frac{\pi}{2}$, imz > 0.
 - b) Find an harmonic function u(z) on the semi-infinite strip $\frac{-\pi}{2} < \text{Rez} < \frac{\pi}{2}$, im z > 0 with boundary values u(z) = 1 for im(z) = 0 and u(z) = 0 for $\text{Rez} = \frac{-\pi}{2}$ and $\text{Rez} = \frac{\pi}{2}$.
- 6) Assume $2z(1-z)\phi'(z) = \phi(z) + z$ and $\phi(0) = 0$. Show

$$\phi(z) = z + \frac{2}{3}z^2 + \frac{2 \cdot 4}{3 \cdot 5}z^3 + \cdots$$

for |z| < 1.

7) Let Ω be the unbounded region of the extended plane which is exterior to the two circles of radius 4, centered at 5 and -5. Find a fractional linear transformation mapping Ω to an annulus 1 < z < R. What is R?

- (8) Let f(z) be analytic in Rez > 0 and assume

 - a) f(1) = 1, b) f(z+1) = zf(z),

c)
$$\frac{d^2}{dz^2}(\log f(z)) = \sum_{n=0}^{\infty} (\frac{1}{n+z})^2$$
. Prove $f(z) = z^{-1}e^{cz} \prod_{n=1}^{\infty} e^{z/n} (1 + \frac{z}{n})^{-1}$.

- 9) Let f(z) be analytic and assume $f(0) \neq 0$ and $|f(z)| \leq M$ on the circle $|z| \leq R$. Prove that the number of zeros f(z) has in the region $|z| \leq \frac{1}{3}R$ does not exceed $\tfrac{1}{\log 2}\log(\tfrac{M}{|f(0)|}).$
- 10) Classify the one-to-one analytic functions $f: \mathbb{C} \to \mathbb{C}$. (Sketch the proofs of the theorems you use.)