Complex Analysis Prelim

1. (a) Determine a linear fractional transformation

$$T: \hat{\mathbb{C}} \to \hat{\mathbb{C}} \quad (\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}) \text{ such that}$$

$$T(0) = 1, T(1) = -1$$
 and $T(\infty) = i$.

- (b) Determine $T(\hat{\mathbb{R}})$ and $T(\{z : Imz > 0\})$.
- Let {f_n: n ≥ 1} be a sequence of holomorphic functions on Ω = {z: |z| < 1} converging uniformly on compact subsets of Ω to f with f(0) = 0. Prove either f = 0 or in every neighborhood of 0 infinitely many of the f'_ns have a zero.
- 3. Let f be an entire function. Suppose that for some R > 0 there is an M > 0 such that

$$|f(z)| \le M|z|^n$$

for all $|z| \geq R$. Prove f is a polynomial of degree $\leq n$.

4. Prove there is an analytic function f defined on

$${z:|z|>2}$$
 such that $f(z)^2=z^2-1$ for all $|z|>2$.

5. Let f be analytic on $\Omega = \{z : |z| < 1\}$ and $\sup |f(z)| \le 1$.

Prove that for any $a \in \Omega$

$$\cdot \frac{|f'(a)|}{1 - |f(a)|^2} \le \frac{1}{1 - |a|^2}.$$

6. Evaluate

$$\int_0^\infty \frac{1}{1+t^4} dt.$$

7. Suppose C is a simple closed curve in the complex plane bounding the region D, with f and g holomorphic functions on the closure of D.

If |f(z)-g(z)| < |f(z)|+|g(z)| for all $z \in C$ prove f and g have the same number of zeros in D.

8. Consider the function f where

$$f(z) = \frac{1}{(z-1)(z-2)}$$

- (a) Determine the Laurent expansion for 0 < |z-1| < 1.
- (b) Determine the Laurent expansion for $1 < |z 1| < \infty$.
- 9. Suppose $a_n \ge 0$ for n = 1, 2, ... Prove $\prod_{n=1}^{\infty} (1 a_n)$ converges if and only if $\sum_{n=1}^{\infty} a_n$ converges.