Complex Analysis Qualifying Examination — Fall 2003

Show work and carefully justify /prove your assertions.

Problems
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Let a > 0. Evaluate f0°° Trozdz using the methodsof complex analysis. Justify all
steps.

Let D be the region obtained by removing the interval (—1,0] from the disk |2| < 1.

/Find a conformal map from D o the unit disk.
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Let = Z anz" be the Laurent expansion of in 0 < |z|] < 7. Find
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the principal part Z;i_oo anz".
Let f(z) be entire and assume that
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where n > 1 is an integer. Show that f(z) is a polynomial in z of degree < n — 1.
Let ax| <1 (k=1,2,---,n), || < 1 and
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Show that f(z) = b has n solutions in |2] < 1.



