Complex Analysis Qualifying Examination — Fall 2003

Show work and carefully justify/prove your assertions.

Problems

- 1. Let a > 0. Evaluate $\int_0^\infty \frac{\cos ax}{1+x^2} dx$ using the methods of complex analysis. Justify all f steps.
- 2. Let D be the region obtained by removing the interval (-1,0] from the disk |z| < 1. f Find a conformal map from D to the unit disk.
- 3. Let $\frac{1}{z^2 \tan z} = \sum_{n=-\infty}^{\infty} a_n z^n$ be the Laurent expansion of $\frac{1}{z^2 \tan z}$ in $0 < |z| < \pi$. Find the principal part $\sum_{n=-\infty}^{-1} a_n z^n$.
- 4. Let f(z) be entire and assume that

$$\lim_{z \to \infty} \frac{f(z)}{z^n} = 0,$$

where $n \ge 1$ is an integer. Show that f(z) is a polynomial in z of degree $\le n-1$.

5. Let $|a_k| < 1$ $(k = 1, 2, \dots, n)$, |b| < 1 and

$$f(z) = \frac{z - a_1}{1 - \bar{a}_1 z} \frac{z - a_2}{1 - \bar{a}_2 z} \cdots \frac{z - a_n}{1 - \bar{a}_n z}.$$

Show that f(z) = b has n solutions in |z| < 1.