-

- 1. a) State the Riemann Mapping Theorem.
 - b) Give an explicit conformal mapping which takes $C\setminus ((-\infty,-1]U[1,\infty))$ onto the unit disc.
 - c) Is the punctured disc C\{0} conformally equivalent to any annulus { z ∈ C : a < |z| < b } with a, b finite ?

 Justify your answer.</p>
- 2.) Let Γ be the square with corners -i, +i, -2+i, -2-i, traversed counterclockwise; let $f(z) = 2/(z^3-1)$. Compute the winding number of the curve $f(\Gamma)$ about the point w = -1, giving $f(\Gamma)$ the orientation it inherits from Γ .
- 3.) Calculate $\int_{0}^{\infty} \frac{\cos(x)}{1 + x^{2}} dx$
- 4.) Compute the Taylor expansion, about the origin, of $f(z) = \arctan(z^2)$, and determine its radius of convergence.
- 5.) The Gamma function is defined for Re(z) > 0 by $\Gamma(z) = \int_{0}^{\infty} e^{-t} t^{z-1} dt$.
 - a) Show that $\Gamma(z)$ extends to a meromorphic function on the whole complex plane.
 - b) Determine the locations of the poles of Γ(z), their orders, and their residues.
- 6.) Describe the Riemann surface of the algebraic function $f(z) = \sqrt{z^3 z} , \text{ including branch points and the behavior at } \infty.$
- 7.) Construct a function analytic on the unit disc, which has a zero of order n at $z_n = 1 1/n$, for n = 1, 2, 3,
- 8.) Let f(z) be an entire function with the property that $|f(z)| \le |f(z^2)|$ for all z. Show that f(z) must be constant.