(or fer

PhD. prelim in Complex Analysis, Spring 1997.

- 1. Prove any form of the Cauchy-Goursat theorem; (eg. a function holomorphic in an open set in \mathbb{C} which contains the boundary $\emptyset = \frac{\partial \Delta}{\partial x}$ and interior of a triangle Δ , has zero integral around \emptyset).
- 2. Prove the following form of the "Casorati-Weierstrass" theorem: if $f:\mathbb{C}\to\mathbb{C}$ is a holomorphic entire function, and if there is a neighborhood $U=\{z:|z|>r>0\}$ of infinity whose image f(U) is not dense in \mathbb{C} , then f is a polynomial.
- 3. Prove that a sequence of functions holomorphic in an open set U, and which converges uniformly on all closed discs in U, has a limit which is holomorphic in U.
- 4. Use residues to calculate the real integral $\int_{-\infty}^{\infty} \frac{dx}{1+x^4}$, and justify your calculation.
- 5. a) Let A = { z: Im(z) > 0 and $-\pi/2$ < Re(z) < $\pi/2$ }. Find an explicit formula for a (one to one) conformal mapping of the region A onto the interior of the unit circle.
- b) Let $B = \{z: Re(z) > (Im(z))^2 1\}$ be the region on the "right side" of the parabola $x = y^2 1$. Prove or disprove: for every pair of distinct points α, β in B, there is a (one to one) conformal mapping of the region B to itself, taking 0 to α , and 1 to β .
- **6.** (a) Let $\Omega = \{n + mi , for all integers n,m\}$ denote the lattice of "Gaussian integers". Let f be a complex valued function holomorphic at all z not belonging to Ω , and assume that $f(z) = f(z+\omega)$ for all z in $\mathbb{C}-\Omega$, and all ω in Ω . If at z = 0, f is either holomorphic or has at worst a simple pole, prove f is constant.
- (b) Construct a non constant meromorphic function g on \mathbb{C} , such that $g(z) = g(z+\omega)$ for all z in $\mathbb{C}-\Omega$, and all ω in Ω .
- 7. Classify all holomorphic automorphisms $f:\mathbb{C}\cup\{\infty\}\to\mathbb{C}\cup\{\infty\}$ of the Riemann sphere.
- 8. Construct an entire function with simple zeroes at the (positive) square roots of the positive integers, $\{n^{1/2}\}$, n > 0, and no other