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Prove that there are no simple groups of order 56.

Let p be a prime, 1 < n < p— 1 an integer and G be a p-subgroup of S,,. Prove that G is
commutative. If you cannot do the general case, do it for n = 2.

(a) How many elements of the group S,, commute with the element (12)(34)?
(b) What is the order of the group GL(n,F,) for a prime p?

Find the Galois group of the extension Q[v/2 + v/3 + v/5]/Q.

Factor the polynomial 2'® — z into irreducibles in the field F,. Prove that you factors are irre-
ducible.

Let R be a ring, and I an ideal of R. Suppose that every element of R which is not in [ is a unit
of R. Prove that I is a maximal ideal and moreover that it is the only maximal ideal of R.

Let R be a commutative ring with identity. Assume that R contains no zero-divisors and that R
satisfies the descending chain condition on ideals. Prove that R is a field.

Find the Jordan canonical form of the matrix

1 -3 4
4 -7 8
6 -7 7

Let A and B be two n x n matrices with complex coefficients. Assume that (A —1I)" = 0 and that
A*B = BAP for some k € N. Prove that AB = BA. (Hint: prove that A is a polynomial function
of A*.) Give a counterexample to this conclusion if C is replaced by field of positive characteristic.



