

Team Round, 30 minutes

October 26, 2002

WITH SOLUTIONS

No calculators are allowed on this test. You do not have to provide proofs; only the answers matter. Each problem is worth 50 points, for a total of 200 points.

Problem 1. Find the radius of a sphere inscribed in a regular tetrahedron of side 1.

Answer.

$$
\frac{\sqrt{2}}{4 \sqrt{3}}=\frac{\sqrt{6}}{12}=\frac{1}{2 \sqrt{6}}=\frac{1}{\sqrt{24}}
$$

Solution. The radius is $1 / 4$ of the height: this can be seen for example by using weights, since the center of the sphere will be the barycenter of the tetrahedron.

If h is the height then $h^{2}=1^{2}-(2 / 3) s^{2}$, where s is the height in a regular triangle. Hence, $s^{2}=1^{2}-(1 / 2)^{2}$. Putting this all together, we obtain

$$
h=\frac{1}{4} \sqrt{1^{2}-\left(1^{2}-\left(\frac{1}{2}\right)^{2}\right) \times\left(\frac{2}{3}\right)^{2}}
$$

Problem 2. Find

$$
\sum_{i=1}^{99}\lfloor 0.37 i\rfloor
$$

($\lfloor x\rfloor$ denotes the integral part of x.)
Answer. 1782

Solution. We will do this for arbitrary relatively prime numbers a and b (in our example $a=100$ and $b=37$). On a grid, draw the $a \times b$ rectangle. Then the sum represents the number of lattice points in the interior $(a-2) \times(b-2)$-rectangle which lie under the diagonal. Since there is the same number of points that lie over the diagonal, the answer is $\frac{(a-1)(b-1)}{2}$. In our case, we get $\frac{99 \cdot 36}{2}=1782$.

Problem 3. Find the number of even binomial coefficients in the 30th row of Pascal's triangle (the one starting with $1,30, \ldots$).

Answer. 15
Solution. Let us first find the number of odd binomial coefficients. We need to compute the number of odd coefficients in $(1+x)^{30}$ which is the same as the number of powers of x in $(1+x)^{30} \bmod 2$. Note that $(a+b)^{2}=a^{2}+b^{2} \bmod 2$, and therefore $(a+b)^{4}=a^{4}+b^{4} \bmod 2$ and similarly for any power of 2 . We have $30=16+8+4+2$. Hence,

$$
\begin{aligned}
(1+x)^{30} & =(1+x)^{16}(1+x)^{8}(1+x)^{4}(1+x)^{2} \\
& =\left(1+x^{16}\right)\left(1+x^{8}\right)\left(1+x^{4}\right)\left(1+x^{2}\right) \bmod 2
\end{aligned}
$$

In the last product all monomials are distinct, since every positive integer can be written as a sum of powers of 2 in a unique way. Therefore, there are $2^{4}=16$ odd coefficients and $31-16=15$ even ones.

Problem 4. Imagine a rectangular grid of lines, horizontal and vertical, 1 meter apart. What is the probability that a pin 1 meter long will touch one of the lines on the grid when dropped at random?

Answer. $\frac{3}{\pi}$
Solution. Suppose the pin is dropped at an angle $0 \leq \alpha \leq \pi / 2$. Then it will intersect the grid if and only if the left end falls in the shaded area on the picture below,

whose area is

$$
1-(1-\sin \alpha)(1-\cos \alpha)=\sin \alpha+\cos \alpha-(\sin 2 \alpha) / 2 .
$$

Since different values of α are equally likely, the probability is

$$
p=\frac{2}{\pi} \int_{0}^{\pi / 2}(\sin \alpha+\cos \alpha-(\sin 2 \alpha) / 2) d \alpha=\frac{2}{\pi} \cdot \frac{3}{2}=\frac{3}{\pi}
$$

