Problem 1. It takes David 6 hours to paint his fence. Since he doesn't have enough time, he asks his friends Alex and Chris to help. If Alex can paint the entire fence in just 3 hours and Chris can paint the entire fence in 4 hours, how many hours will it take all three to paint the fence?

Problem 1. It takes David 6 hours to paint his fence. Since he doesn't have enough time, he asks his friends Alex and Chris to help. If Alex can paint the entire fence in just 3 hours and Chris can paint the entire fence in 4 hours, how many hours will it take all three to paint the fence?

Problem 2. A circle is inscribed in a regular hexagon. If the perimeter of the hexagon is 12 , what is the area of the circle?

Problem 2. A circle is inscribed in a regular hexagon. If the perimeter of the hexagon is 12 , what is the area of the circle?

Problem 3. How many points (m, n) with integer coordinates are on the line segment joining $(-2,3)$ and $(34,30)$?

Problem 3. How many points (m, n) with integer coordinates are on the line segment joining $(-2,3)$ and $(34,30)$?

Problem 4. Four identical tennis balls are packed tightly in a cylindrical can. What fraction of the volume of the can is unoccupied?

Problem 4. Four identical tennis balls are packed tightly in a cylindrical can. What fraction of the volume of the can is unoccupied?

Problem 5. What is the angle, in degrees, formed by the hands of a clock at precisely 1:20? (Choose the angle less than 180°.)

Problem 5. What is the angle, in degrees, formed by the hands of a clock at precisely 1:20? (Choose the angle less than 180°.)

Problem 6. Fill in the missing digits so that N will be divisible by 99 :

$$
N=8 _52 _6
$$

Problem 6. Fill in the missing digits so that N will be divisible by 99 :

$$
N=8 _52 _6
$$

Problem 7. A 25-meter ladder is placed against the wall and the foot of the ladder is 7 meters away from the wall. When the top of the ladder slides 4 meters down the wall, how far does the foot of the ladder slide (in meters)?

Problem 7. A 25-meter ladder is placed against the wall and the foot of the ladder is 7 meters away from the wall. When the top of the ladder slides 4 meters down the wall, how far does the foot of the ladder slide (in meters)?

Problem 8. A fair coin is tossed 8 times. What is the probability that it comes up heads at least 4 times?

Problem 8. A fair coin is tossed 8 times. What is the probability that it comes up heads at least 4 times?

Problem 9. An ant on the ground must look up at a 60° angle to see the top of a nearby building. When she walks 40 ft away from the building, she must now look up at a 30° angle to see the top of the building. How high is the building?

Problem 9. An ant on the ground must look up at a 60° angle to see the top of a nearby building. When she walks 40 ft away from the building, she must now look up at a 30° angle to see the top of the building. How high is the building?

Problem 10. If r and s are the solutions of

$$
x^{2}+a x+b=0,
$$

then express $r^{3}+s^{3}$ in terms of a and b.

Problem 10. If r and s are the solutions of

$$
x^{2}+a x+b=0,
$$

then express $r^{3}+s^{3}$ in terms of a and b.

