Problem 1. The length of a rectangle increases by 20% and its width decreases by 10%. By what percentage does the area of the rectangle increase?

Problem 1. The length of a rectangle increases by 20% and its width decreases by 10%. By what percentage does the area of the rectangle increase?

Problem 2. Four circles with radius 1 are packed tightly together. What is the radius of the smallest circle that will contain them all?

L		

Problem 2. Four circles with radius 1 are packed tightly together. What is the radius of the smallest circle that will contain them all?

Problem 3. Find *all* real solutions of the equation $x + 4\sqrt{x} - 21 = 0$.

Problem 3. Find *all* real solutions of the equation $x + 4\sqrt{x} - 21 = 0$.

Problem 4. Four identical tennis balls are packed, one on top of the other, tightly (but without changing their spherical shape) in a cylindrical can. What fraction of the volume of the can is outside the balls?

Problem 4. Four identical tennis balls are packed, one on top of the other, tightly (but without changing their spherical shape) in a cylindrical can. What fraction of the volume of the can is outside the balls?

Problem 5. Derek has in his pocket assorted coins (some combination of pennies, nickels, dimes, quarters, and fifty-cent pieces). What is the largest possible amount of money he can have without being able to make change for a nickel, a dime, a quarter, a fifty cent piece or a dollar?

1		

Problem 5. Derek has in his pocket assorted coins (some combination of pennies, nickels, dimes, quarters, and fifty-cent pieces). What is the largest possible amount of money he can have without being able to make change for a nickel, a dime, a quarter, a fifty cent piece or a dollar?

Problem 6. Justin, Miley, and Charice are among eight singers who will divided at random into two groups of four. What is the probability that all three end up in the same group?

-		

Problem 6. Justin, Miley, and Charice are among eight singers who will divided at random into two groups of four. What is the probability that all three end up in the same group?

Problem 7. The midpoints of a regular hexagon are joined to form another regular hexagon inside. What is the ratio of the area of the inner hexagon to the area of the outer hexagon?

1			

Problem 7. The midpoints of a regular hexagon are joined to form another regular hexagon inside. What is the ratio of the area of the inner hexagon to the area of the outer hexagon?

1		

Problem 8. What is the minimum value of

$$x^2 + y^2 + x - 4y + 5$$

as x and y range over all real numbers?

Problem 8. What is the minimum value of

$$x^2 + y^2 + x - 4y + 5$$

as x and y range over all real numbers?

Problem 9. In radians, what is the sum $\angle A + \angle B + \angle C + \angle D + \angle E$ in the figure?

Problem 9. In radians, what is the sum $\angle A + \angle B + \angle C + \angle D + \angle E$ in the figure?

Problem 10. Given a set A of real numbers, define $A + A = \{a + b : a, b \in A\}$. For example, if $A = \{1, 4\}$, then $A + A = \{2, 5, 8\}$. If A consists of precisely four (different) numbers, what is the smallest number of elements in A + A?

Problem 10. Given a set A of real numbers, define $A + A = \{a + b : a, b \in A\}$. For example, if $A = \{1, 4\}$, then $A + A = \{2, 5, 8\}$. If A consists of precisely four (different) numbers, what is the smallest number of elements in A + A?