Problem 1. If $a+b$ means the maximum of a and b, and $a \cdot b$ means their sum, what is $(2+3) \cdot(4+5)$?

Problem 1. If $a+b$ means the maximum of a and b, and $a \cdot b$ means their sum, what is $(2+3) \cdot(4+5)$?

Problem 2. An x by x square is drawn in the center of a 1 by 1 square, and then the corners are connected as shown. If the 5 regions all have the same area, what is x ?

Problem 2. An x by x square is drawn in the center of a 1 by 1 square, and then the corners are connected as shown. If the 5 regions all have the same area, what is x ?

Problem 3. If the average of a and b is 20, the average of b and c is 30 , and the average of a and c is 70 , what is the average of a, b, and c ?

Problem 3. If the average of a and b is 20, the average of b and c is 30 , and the average of a and c is 70 , what is the average of a, b, and c ?

Problem 4. In this problem, $\log (x)$ denotes the base 10 logarithm of x. Simplify the sum

$$
\sum_{k=1}^{9} \log \left(1+\frac{1}{k}\right)=\log \left(1+\frac{1}{1}\right)+\log \left(1+\frac{1}{2}\right)+\log \left(1+\frac{1}{3}\right)+\cdots+\log \left(1+\frac{1}{9}\right)
$$

Problem 4. In this problem, $\log (x)$ denotes the base 10 logarithm of x. Simplify the sum

$$
\sum_{k=1}^{9} \log \left(1+\frac{1}{k}\right)=\log \left(1+\frac{1}{1}\right)+\log \left(1+\frac{1}{2}\right)+\log \left(1+\frac{1}{3}\right)+\cdots+\log \left(1+\frac{1}{9}\right)
$$

Problem 5. On a recent backpacking trip, slow Mo hiked 9 miles per day for the first 6 days. Then fast Dave joined, and they each hiked 16 miles per day for the next 4 days. How many miles per day did Mo average for the entire trip?

Problem 5. On a recent backpacking trip, slow Mo hiked 9 miles per day for the first 6 days. Then fast Dave joined, and they each hiked 16 miles per day for the next 4 days. How many miles per day did Mo average for the entire trip?

Problem 6. A cube with side length 1 is inscribed in a sphere. What is the radius of the sphere?

Problem 6. A cube with side length 1 is inscribed in a sphere. What is the radius of the sphere?

Problem 7. How many ways can 7 people be split into two groups, if each group must contain at least 2 people?

Problem 7. How many ways can 7 people be split into two groups, if each group must contain at least 2 people?

Problem 8. Let \overleftarrow{n} denote the digit reversal of the natural number n, so that, for example, $\overleftarrow{123}=321$. Find

$$
(10+11+\cdots+99)-(\overleftarrow{10}+\overleftarrow{11}+\cdots+\overleftarrow{99})
$$

Problem 8. Let \overleftarrow{n} denote the digit reversal of the natural number n, so that, for example, $\overleftarrow{123}=321$. Find

$$
(10+11+\cdots+99)-(\overleftarrow{10}+\overleftarrow{11}+\cdots+\overleftarrow{99})
$$

Problem 9. What is the coefficient of x^{25} in

$$
\prod_{k=0}^{\infty}\left(1+x^{2^{k}}\right)=(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right)\left(1+x^{16}\right)\left(1+x^{32}\right) \cdots \quad ?
$$

Problem 9. What is the coefficient of x^{25} in

$$
\prod_{k=0}^{\infty}\left(1+x^{2^{k}}\right)=(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right)\left(1+x^{16}\right)\left(1+x^{32}\right) \cdots \quad ?
$$

Problem 10. What is the base 10 representation of the binary number 11111011111 ?
(That's 5 ones, a zero, and 5 more ones.)

Problem 10. What is the base 10 representation of the binary number 11111011111 ?
(That's 5 ones, a zero, and 5 more ones.)

