

Sponsored by: UGA Math Department and UGA Math Club
Team Round / 1 hour / 210 points
November 16, 2013
No calculators are allowed on this test. You do not have to provide proofs; only the answers matter. Each problem is worth 70 points, for a total of 210 points.

Problem 1 (Octahedron vs tetrahedron). Let O be the volume of a regular octahedron with edge length 1 , and let T be the volume of a regular tetrahedron with edge length 1 . Find the ratio $\frac{O}{T}$.

Problem 2 (Nonstandard primes). By a binary string, we mean a finite nonempty sequence of 0 s and 1 s , with no leading 0 s unless the string consists only of 0 . Listing strings by length, the first few examples are thus $0,1,10,11,101, \ldots$ We define non-carry addition (+) and non-carry multiplication (\times) of binary strings by the usual grade-school algorithms for addition and multiplication but systematically ignoring carries. For example, $1+1=0$ with our definition, and

$$
\begin{array}{rr}
& 10101 \\
10101 \\
+\quad 1101 \\
\hline 11000 & \text { while } \\
\hline & 00101 \\
\hline & 10101 \\
& 10101 \\
\hline
\end{array}
$$

A prime is a binary string with more than one digit which cannot be written as a non-carry product except as $1 \times$ itself or itself $\times 1$. For example, 10 and 11 are prime, but 11101001 is not.

How many primes are there with exactly six digits?

Problem 3 (More rectangular boxing). You may recall that on problem \#15, you found that the distance from P to Q on the surface of a $1 \times 1 \times 2$ rectangular box is $\sqrt{8}$. (The dashed lines in the figure below show one path that achieves this minimum.) Surprisingly, Q is not the point on the surface of the box which is farthest from P. Find the distance from P to the point that is farthest from P.

