

Sponsored by: UGA Math Department and UGA Math Club
Team Round / 1 hour / 210 points
November 8, 2014
No calculators are allowed on this test. You do not have to provide proofs; only the answers matter. Each problem is worth 70 points, for a total of 210 points.

Problem 1 (Lights out). In the game of "Lights out" there is a collection of lights, some of which are on, and some off. If you touch any light, that light and all of the adjacent lights will change; those that are on will turn off, and those that are off will turn on. You win if you can touch a sequence of lights so that all of the lights are off. Depending on which lights are initially on, this may not be possible.

For this problem, there are 8 lights, located at the corners of a cube, so that each light is adjacent to 3 other lights. How many "winning positions" are there? In other words, for how many initial configurations of on/off lights is it possible to turn off all of the lights? Having all of the lights initially off counts as a winning position (you've already won!).

Problem 2 (Counting lattice points). Partition the plane into $1 \times 1$ squares using the lines $x=n$ and $y=m$ for all integers $m$ and $n$. Then draw a circle of radius 100 centered at $(0,0)$. How many of the $1 \times 1$ squares does the circle pass through the interior of? Notice that the circle passes through the interior of the square whose lower left corner is $(0,99)$, but it does not pass through the interior of the square whose lower left corner is $(0,100)$.

Problem 3 (Primitive vertices). Let $P_{n}$ denote the regular $n$-gon centered at the origin and having one vertex at $(1,0)$. We adopt the convention that $P_{1}$ consists of the single point $(1,0)$ and that $P_{2}$ consists of the line segment connecting $(-1,0)$ and $(1,0)$. A vertex of $P_{n}$ is called primitive if it is not a vertex of $P_{m}$ for any $m<n$. For example, each vertex of $P_{3}$ is primitive except $(1,0)$. Let $C_{n}$ denote the center of mass of the primitive vertices of $P_{n}$. For how many $n \leq 100$ is $C_{n}$ located at $(0,0)$ ?

# RETURN THIS SHEET 

## Team ID:

Team name:

Answer 1:

Answer 2:

Answer 3:

