

Sponsored by: UGA Math Department and UGA Math Club
Ciphering Round / 2 minutes Per problem

WITH SOLUTIONS

No calculators are allowed on this test. 2 minutes per problem, 10 points for each correct answer.
Problem 1. In a barn with chickens and dogs there are 5 heads and 14 legs. How many chickens are there? (A chicken has 2 legs and a dog has 4.)

Answer. 3
Solution. If all dogs stand on 2 legs, there will be 10 legs on the floor. Once the dogs stand on all 4 legs, there will be 14 legs, 4 more. So, there are 2 dogs and hence 3 chickens.

Problem 2. Several logs are cut into 16 pieces by making a total of 10 cuts (every time only one log is cut). How many logs were there?

Answer. 6
Solution. Each cut adds one piece, so there were 6 logs.

Problem 3. Ted drives to Atlanta at 60 mph and returns at 30 mph . What was his average speed for the round trip, in mph?

Answer. 40
Solution. Denote the distance between Athens and Atlanta by d (miles). Then it will take Ted $d / 60+d / 30$ hours to make the roundtrip, and the average speed will be

$$
\frac{2 d}{\frac{d}{60}+\frac{d}{30}}=\frac{2}{\frac{3}{60}}=\frac{120}{3}=40 \mathrm{mph}
$$

Problem 4. Express $\sqrt{3-4 i}$ in the form $a+b i$ with $a>0$. (Here, $i=\sqrt{-1}$.)

Answer.

$$
2-i
$$

Solution.

$$
(a+b i)^{2}=\left(a^{2}-b^{2}\right)+2 a b i
$$

So, $a^{2}-b^{2}=3$ and $2 a b=4, a b=-2$. Obviously, $a=2, b=-1$ works.

Problem 5. In the alphabet of the Mumbo-Jumbo tribe there are 3 letters. A word is any sequence of these letters which is 4 letters or shorter. How many words are there in the language of Mumbo-Jumbo?

Answer.

Solution.

$$
3+3^{2}+3^{3}+3^{4}=3\left(1+3+3^{2}+3^{3}\right)=3(1+3+9+27)=120
$$

Problem 6. Point P is inside rectangle $A B C D$. In sq. units, the areas of $\triangle A P B, \triangle A P D$, and $\triangle C P D$ are 7, 6, and 2, respectively. Find the area of $\triangle B P C$.

Answer. 3
Solution. $9=$ area $\triangle A P B+$ area $\triangle C P D=\frac{1}{2}(A B)(B C)$. But this is also area $\triangle B P C+$ area $\triangle A P D$, so area $\triangle B P C=9-6=3$.

Problem 7. How many 6-digit numbers are divisible by 5 ?

Answer.

Solution. There are 9 possibilities for the first digit: 1-9, 10 possibilities for digits two through 5, and 2 possibilities for the last digit: 0 and 5 . Therefore, there are

$$
9 \cdot 10^{4} \cdot 2=180,000
$$

numbers in all.

Problem 8. Point P is inside rectangle $A B C D . A P=6, D P=2$, and $C P=7$. Find $B P$.

Answer. 9

Solution.

We have

$$
\begin{aligned}
x^{2}+z^{2} & =36 \\
y^{2}+w^{2} & =49 \\
y^{2}+z^{2} & =4 \\
x^{2}+w^{2} & =?^{2}
\end{aligned}
$$

Therefore, $?^{2}+4=\left(x^{2}+w^{2}\right)+\left(y^{2}+z^{2}\right)=\left(x^{2}+z^{2}\right)+\left(y^{2}+w^{2}\right)=36+49=85$, so $?=9$.

Problem 9. How many zeros are at the end of the base three decimal for 27! ?

Answer. 13
Solution. $27=3^{3}, 9$ and 18 are divisible by $3^{2}, 3,6,12,15,21,24$ are divisible by 3^{1}. Together, this gives

$$
3+2 \cdot 2+6=13
$$

Problem 10. What is the smallest integer $n>2$ for which the fraction

$$
\frac{n-2}{n^{2}+13}
$$

is not in lowest terms?

Answer. 19
Solution. The fraction fails to be in lowest terms if and only if there is some prime p that divides both numerator and denominator. This occurs if and
only if $n-2 \equiv 0(\bmod p)$ and $n^{2}+13 \equiv 0(\bmod p)$, so $n \equiv 2$ and therefore $17 \equiv 0(\bmod p)$. This means that $p=17$ and so the smallest n is 19 .

Authors. Written by Ted Shifrin, Valery Alexeev and Boris Alexeev © 2005. Some problems were taken from N.B. Alfutova, A.B. Ustinov "Algebra and number theory for mathematical schools" published by Moscow Center for Continuing Mathematical Education, 2002.

