

Sponsored by: UGA Math Department and UGA Math Club
Ciphering Round / 2 minutes per problem
November 18, 2006
WITH SOLUTIONS
No calculators are allowed on this test. 2 minutes per problem, 10 points for each correct answer.

Problem 1. It takes David 6 hours to paint his fence. Since he doesn't have enough time, he asks his friends Alex and Chris to help. If Alex can paint the entire fence in just 3 hours and Chris can paint the entire fence in 4 hours, how many hours will it take all three to paint the fence?

Answer. 4/3 (1 1/3)
Solution. In one hour, David paints $1 / 6$ of the fence, Alex paints $1 / 3$ of the fence, and Chris paints $1 / 4$ of the fence. So, all three working together paint $3 / 4$ of the fence in one hour. It takes them $4 / 3$ hours to paint the entire fence.

Problem 2. A circle is inscribed in a regular hexagon. If the perimeter of the hexagon is 12 , what is the area of the circle?

Answer. 3π
Solution. Each side of the hexagon is 2, and so the radius of the circle is
$\sqrt{3}$. Thus, the area of the circle is 3π.

Problem 3. How many points (m, n) with integer coordinates are on the line segment joining $(-2,3)$ and $(34,30)$?

Answer. 10
Solution. The line joining $(-2,3)$ and $(34,30)$ has slope $\frac{30-3}{34-(-2)}=\frac{3}{4}$. Thus, starting at any point with integer coordinates, if we move horizontally 4 units and vertically 3 units, we will come to the next point on the line with integer coordinates. Since $36 / 4=9$, we have our original point and 9 other points on the line segment.

Problem 4. Four identical tennis balls are packed tightly in a cylindrical can. What fraction of the volume of the can is unoccupied?

Answer. 1/3
Solution. If the radius of the can is r, then its height is $8 r$, and the volume of the cylinder is $8 \pi r^{3}$. The volume occupied by the four balls is $4 \cdot \frac{4}{3} \pi r^{3}=$ $\frac{16}{3} \pi r^{3}$. Thus, the fraction unoccupied is

$$
\frac{8-16 / 3}{8}=\frac{1}{3}
$$

Problem 5. What is the angle, in degrees, formed by the hands of a clock at precisely 1:20? (Choose the angle less than 180°.)

Answer. 80
Solution. In each hour, the hour hand moves through $\frac{360^{\circ}}{12}=30^{\circ}$. So, in $11 / 3$ hours, the hour hand makes an angle of 40° with the vertical, whereas the minute hand makes an angle of $\frac{360}{3}=120^{\circ}$ degrees with the vertical. Thus, the angle between the two hands is 80°.

Problem 6. Fill in the missing digits so that N will be divisible by 99:

$$
N=8 _52 _6
$$

Answer.

$$
N=805266
$$

Solution. Say $N=8 a 52 b 6$. Since N is divisible by 9 , we know that $8+a+5+2+b+6=21+a+b$ must be divisible by 9 . Similarly, since N is divisble by 11 , we know that $(8+5+b)-(a+2+6)=b-a+5$ must be divisible by 11. Since a and b are integers between 0 and 9 inclusive, it follows that

$$
\begin{aligned}
a+b & =6 \text { or } 15 \\
-a+b & =-5 \text { or } 6 .
\end{aligned}
$$

Obviously, $a=0$ and $b=6$ gives a solution. But it is the only solution: Adding and subtracting the two equations with various right-hand sides gives $2 b=1(6$ and -5$), 2 b=10$ and $2 a=20(15$ and -5$)$, and $2 b=21(15$ and $6)$.

Problem 7. A 25 -meter ladder is placed against the wall and the foot of the ladder is 7 meters away from the wall. When the top of the ladder slides 4 meters down the wall, how far does the foot of the ladder slide (in meters)?

Answer. 8
Solution. The key to this problem is to recognize two Pythagorean triangles: $3-4-5$ and $7-24-25$. In its original position, the height of the ladder is 24 meters, and when it slides 4 meters down, its height is 20 meters. That means that the foot of the ladder is now 15 meters from the wall, so it has slid a distance of 8 meters.

Problem 8. A fair coin is tossed 8 times. What is the probability that it comes up heads at least 4 times?

Answer. $\frac{163}{256}$
Solution. There are $\binom{8}{k}$ ways of throwing k heads, $0 \leq k \leq 8$. These numbers form the eighth row of Pascal's triangle:

$$
\begin{array}{lllllllll}
1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 & 1
\end{array}
$$

So the answer is

$$
\frac{70+56+28+8+1}{2^{8}}=\frac{163}{256}\left(=\frac{1}{256} \cdot \frac{256+70}{2}\right) .
$$

Problem 9. An ant on the ground must look up at a 60° angle to see the top of a nearby building. When she walks 40 ft away from the building, she must now look up at a 30° angle to see the top of the building. How high is the building?

Answer. 20 $\sqrt{3} \mathrm{ft}$
 agram we have

$$
\tan 60^{\circ}=\sqrt{3}=\frac{y}{x} \quad \text { and } \quad \tan 30^{\circ}=\frac{1}{\sqrt{3}}=\frac{y}{x+40} .
$$

Thus, $x=y / \sqrt{3}$ and $y=\frac{x+40}{\sqrt{3}}=\frac{y}{3}+\frac{40}{\sqrt{3}}$, so $y=20 \sqrt{3} \mathrm{ft}$.

Problem 10. If r and s are the solutions of

$$
x^{2}+a x+b=0,
$$

then express $r^{3}+s^{3}$ in terms of a and b.

Answer. $3 a b-a^{3}$
Solution. Since $x^{2}+a x+b=(x-r)(x-s)$, we know that $r+s=-a$ and $r s=b$. Thus,

$$
(r+s)^{3}=r^{3}+3 r^{2} s+3 r s^{2}+s^{3}=\left(r^{3}+s^{3}\right)+3 r s(r+s)
$$

and so $r^{3}+s^{3}=(-a)^{3}-3 b(-a)=3 a b-a^{3}$.

Authors. Written by Meredith Perrie and Ted Shifrin.

