

Sponsored by: UGA Math Department and UGA Math Club
Team Round / 45 min / 150 points

WITH SOLUTIONS

No calculators are allowed on this test. You do not have to provide proofs; only the answers matter. Each problem is worth 50 points, for a total of 150 points.

For problem 3, the answer should be an exact expression, such as $\pi / 2$, $\sqrt{3}+1,8 / 3$, etc. No approximate answers will be accepted.

Problem 1. (Five secret numbers) Suppose there are 5 numbers whose pairwise sums are

$$
5,9,20,24,31,35,39,42,46,61
$$

What are the original 5 numbers? Write them in increasing order.

Answer.

$$
-3,8,12,27,34
$$

Solution. Denote the numbers $a \leq b \leq c \leq d \leq e$. Then
$a+b=5, \quad d+e=61, \quad$ and
$a+b+c+d+e=\frac{5+9+20+24+31+35+39+42+46+61}{4}=\frac{312}{4}=78$

Therefore,

$$
c=(a+b+c+d+e)-(a+b)-(d+e)=78-5-61=12
$$

The next largest number after $a+b$ is $a+c=9$, so $a=9-12=-3$. Then $b=(a+b)-a=5-(-3)=8$. Similarly, $e=34$ and $d=27$.

Problem 2. (The last man standing) n people stand in a circle. Then, every second person is excluded until only one is left. For example, with 10 people, the order of exclusion is as follows:

$$
2,4,6,8,10,3,7,1,9
$$

so the last remaining person is number 5 .
Now start with 2005 people. Who will be the last person standing?

Answer. 1963
Solution. Denote the answer for n by $J(n)$. Then we have:

$$
J(2 n)=2 J(n)-1 \quad \text { and } \quad J(2 n+1)=2 J(n)+1
$$

Indeed, if there are originally $2 n$ people, the first n people to be eliminated are numbered $2,4,6,8, \ldots, 2 n$. The remaining n people, numbered $1,3,5, \ldots, 2 n-1$ will essentially be eliminated exactly as if they were numbered $1,2,3, \ldots, n$. Thus, $J(2 n)=2 J(n)-1$; the argument for the other case is similar.

To compute $J(2005)$, read down the first column and up the second:

$$
\begin{aligned}
2005 & =2 \cdot 1002+1 \\
1002 & =2 \cdot 501 \\
501 & =2 \cdot 250+1 \\
250 & =2 \cdot 125 \\
125 & =2 \cdot 62+1 \\
62 & =2 \cdot 31 \\
31 & =2 \cdot 15+1 \\
15 & =2 \cdot 7+1 \\
7 & =2 \cdot 3+1 \\
3 & =2 \cdot 1+1
\end{aligned}
$$

It can also be shown that if $n=\left(1 b_{m-1} b_{m-2} \cdots b_{1} b_{0}\right)_{2}$ written in binary, then $J(n)=\left(b_{m-1} b_{m-2} \cdots b_{1} b_{0} 1\right)_{2}$.

Problem 3. (Two triangles) In a triangle $A B C$, vertices are connected to the points $A^{\prime}, B^{\prime}, C^{\prime}$ which divide the corresponding sides with the ratio 2 to 1 , as in the picture, to form a small triangle $K L M$ in the center. What is the ratio of area of $A B C$ to the area of $K L M$? (The answer must be greater than 1.)

Answer. 7

Solution. Put the triangle $A B C$ in the 3-dimensional space in the plane $x+y+z=1$ so that the vertices are $(1,0,0),(0,1,0),(0,0,1)$. Then the lines are cut out by planes $2 x=y, 2 y=z$ and $2 z=x$. Solving for $2 x=y$, $2 y=z$ and $x+y+z=1$ gives $(1 / 7,2 / 7,4 / 7)$ and the other two vertices of $K L M$ are obtained by rotating this triple around. Let the side of triangle $A B C$ be x and the side of $K L M$ be y. We have $x^{2}=2$. The side y is the length of the vector

$$
(2 / 7,4 / 7,1 / 7)-(1 / 7,2 / 7,4 / 7)=(1 / 7,2 / 7,-3 / 7)
$$

Its length can be found using the distance formula:

$$
y^{2}=\left(\frac{1}{7}\right)^{2}+\left(\frac{2}{7}\right)^{2}+\left(\frac{-3}{7}\right)^{2}=\frac{1^{2}+2^{2}+3^{2}}{7^{2}}=\frac{14}{7^{2}}=\frac{2}{7}
$$

The ratio of the areas is

$$
\frac{x^{2}}{y^{2}}=\frac{2}{2 / 7}=7
$$

[The ratio of these areas is independent of the shape of the original triangle: when we act on the plane by a linear transformation, all areas are multiplied by the same constant, the absolute value of its determinant.]

Authors. Written by Valery Alexeev and Boris Alexeev © 2005 .

