

Sponsored by: UGA Math Department and UGA Math Club

Team Round / 45 min / 150 points

WITH SOLUTIONS

No calculators are allowed on this test. You do not have to provide proofs; only the answers matter. Each problem is worth 50 points, for a total of 150 points.

For problem 3, the answer should be an exact expression, such as $\pi/2$, $\sqrt{3} + 1$, 8/3, etc. No approximate answers will be accepted.

Problem 1. (Five secret numbers) Suppose there are 5 numbers whose pairwise sums are

5, 9, 20, 24, 31, 35, 39, 42, 46, 61

What are the original 5 numbers? Write them in increasing order.

Answer.

$$-3, 8, 12, 27, 34$$

Solution. Denote the numbers $a \leq b \leq c \leq d \leq e$. Then

$$a+b=5,$$
 $d+e=61,$ and
 $a+b+c+d+e=\frac{5+9+20+24+31+35+39+42+46+61}{4}=\frac{312}{4}=78$

Therefore,

$$c = (a + b + c + d + e) - (a + b) - (d + e) = 78 - 5 - 61 = 12$$

The next largest number after a + b is a + c = 9, so a = 9 - 12 = -3. Then b = (a + b) - a = 5 - (-3) = 8. Similarly, e = 34 and d = 27.

Problem 2. (The last man standing) n people stand in a circle. Then, every second person is excluded until only one is left. For example, with 10 people, the order of exclusion is as follows:

so the last remaining person is number 5.

Now start with 2005 people. Who will be the last person standing?

Answer. 1963

Solution. Denote the answer for n by J(n). Then we have:

J(2n) = 2J(n) - 1 and J(2n+1) = 2J(n) + 1

Indeed, if there are originally 2n people, the first n people to be eliminated are numbered $2, 4, 6, 8, \ldots, 2n$. The remaining n people, numbered $1, 3, 5, \ldots, 2n - 1$ will essentially be eliminated exactly as if they were numbered $1, 2, 3, \ldots, n$. Thus, J(2n) = 2J(n) - 1; the argument for the other case is similar. To compute J(2005), read down the first column and up the second:

$2005 = 2 \cdot 1002 + 1$	$J(2005) = 2 \cdot 981 + 1 = 1963$
$1002 = 2 \cdot 501$	$J(1002) = 2 \cdot 491 - 1 = 981$
$501 = 2 \cdot 250 + 1$	$J(501) = 2 \cdot 245 + 1 = 491$
$250 = 2 \cdot 125$	$J(250) = 2 \cdot 123 - 1 = 245$
$125 = 2 \cdot 62 + 1$	$J(125) = 2 \cdot 61 + 1 = 123$
$62 = 2 \cdot 31$	$J(62) = 2 \cdot 31 - 1 = 61$
$31 = 2 \cdot 15 + 1$	$J(31) = 2 \cdot 15 + 1 = 31$
$15 = 2 \cdot 7 + 1$	$J(15) = 2 \cdot 7 + 1 = 15$
$7 = 2 \cdot 3 + 1$	$J(7) = 2 \cdot 3 + 1 = 7$
$3 = 2 \cdot 1 + 1$	$J(3) = 2 \cdot 1 + 1 = 3$
	J(1) = 1

It can also be shown that if $n = (1b_{m-1}b_{m-2}\cdots b_1b_0)_2$ written in binary, then $J(n) = (b_{m-1}b_{m-2}\cdots b_1b_01)_2$.

Problem 3. (Two triangles) In a triangle ABC, vertices are connected to the points A', B', C' which divide the corresponding sides with the ratio 2 to 1, as in the picture, to form a small triangle KLM in the center. What is the ratio of area of ABC to the area of KLM? (The answer must be greater than 1.)

Answer. 7

Solution. Put the triangle ABC in the 3-dimensional space in the plane x + y + z = 1 so that the vertices are (1, 0, 0), (0, 1, 0), (0, 0, 1). Then the lines are cut out by planes 2x = y, 2y = z and 2z = x. Solving for 2x = y, 2y = z and x + y + z = 1 gives (1/7, 2/7, 4/7) and the other two vertices of KLM are obtained by rotating this triple around. Let the side of triangle ABC be x and the side of KLM be y. We have $x^2 = 2$. The side y is the length of the vector

$$(2/7, 4/7, 1/7) - (1/7, 2/7, 4/7) = (1/7, 2/7, -3/7)$$

Its length can be found using the distance formula:

$$y^{2} = \left(\frac{1}{7}\right)^{2} + \left(\frac{2}{7}\right)^{2} + \left(\frac{-3}{7}\right)^{2} = \frac{1^{2} + 2^{2} + 3^{2}}{7^{2}} = \frac{14}{7^{2}} = \frac{2}{7}$$

The ratio of the areas is

$$\frac{x^2}{y^2} = \frac{2}{2/7} = 7$$

[The ratio of these areas is independent of the shape of the original triangle: when we act on the plane by a linear transformation, all areas are multiplied by the same constant, the absolute value of its determinant.]

Authors. Written by Valery Alexeev and Boris Alexeev ©2005.