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WITH SOLUTIONS

No calculators are allowed on this test. You do not have to provide
proofs; only the answers matter. Each problem is worth 70 points, for a total
of 210 points.

Problem 1 (Octahedron vs tetrahedron). Let O be the volume of a reg-
ular octahedron with edge length 1, and let T be the volume of a regular
tetrahedron with edge length 1. Find the ratio O

T
.

Answer. 4

Solution.



The key to the problem is to start with a
tetrahedron of edge length 2. On each trian-
gular face, connect the midpoints of the sides.
These lines partition the tetrahedron into 4
tetrahedra of edge length 1 and an octahe-
dron of edge length 1. We let

T2 = volume of tetrahedron of edge length 2,

T = volume of tetrahedron of edge length 1,

O = volume of octahedron of edge length 2.

Then T2 = 23 · T , and T2 = 4T +O. Hence, O = 4T , and O

T
= 4.

Problem 2 (Nonstandard primes). By a binary string, we mean a finite
nonempty sequence of 0s and 1s, with no leading 0s unless the string con-
sists only of 0. Listing strings by length, the first few examples are thus
0, 1, 10, 11, 101, . . . . We define non-carry addition (+) and non-carry
multiplication (×) of binary strings by the usual grade-school algorithms
for addition and multiplication but systematically ignoring carries. For
example, 1 + 1 = 0 with our definition, and

1 0 1 0 1
+ 1 1 0 1
1 1 0 0 0

while

1 0 1 0 1
× 1 1 0 1

1 0 1 0 1
0 0 0 0 0

1 0 1 0 1
1 0 1 0 1
1 1 1 0 1 0 0 1

A prime is a binary string with more than one digit which cannot be
written as a non-carry product except as 1× itself or itself× 1. For example,
10 and 11 are prime, but 11101001 is not.

How many primes are there with exactly six digits?

Answer. 6



Solution. To each binary string adad−1ad−2 · · · a1a0, we associate the poly-
nomial adxd + ad−1x

d−1 + · · · + a1x + a0. Then the rules for addition and
multiplication correspond precisely to the rules for addition and multiplica-
tion of polynomials, except that addition and multiplication is always done
modulo 2. For example, 11× 11 = 101, since modulo 2,

(x+ 1)2 = x
2 + 2x+ 1 = x

2 + 1.

Remember that 2 = 0 when one works modulo 2.
Seen from this point of view, the problem is asking for the number of

degree 5 polynomials that are irreducible when considered modulo 2. To
begin with, there are 25 polynomials of degree 5 in total, namely

P (x) = x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0,

where each ai is either 0 or 1. (If you prefer to think in terms of strings,
these are the strings 1a4a3a2a1a0.)

As a warm up, let’s determine the irreducibles of degree 2. There are
only four degree 2 polynomials considered mod 2, namely x2 + x+1, x2 + x,
x2+1, and x2. The second and fourth are clearly divisible by x. And x2+1 is
divisible by x+1; one easy way to see this is to use the remainder theorem.
According to that result, the remainder when you divide a polynomial by x+1
is obtained by plugging in −1. Working mod 2, we have −1 = +1, and

12 + 1 = 2 = 0.

So x2+1 is not irreducible. This leaves only x2+x+1. This clearly leaves a
remainder of 1 when divided by x, and if we plug in 1, we get 12+1+1 = 1,
so x2 + x+1 is not divisible by x+1. Since we’ve ruled out degree 1 factors
of x2 + x + 1, we see that x2 + x + 1 is irreducible, and in fact the only
irreducible of degree 2.

OK, let’s try degree 3. Ruling out polynomials that are divisible by x,
we are left with 4 candidates: x3 + x + 1, x3 + x2 + 1, x3 + x + x2 + 1, and
x3+1. The final two are divisible by x+1, by the remainder theorem again,
while the first two are not. But if a polynomial of degree 3 factors, then one
of the factors must be linear. So x3 + x+ 1 and x3 + x2 + 1 are irreducible,
and are the only irreducibles of degree 3.

If a polynomial of degree 5 factors, then it has a factor of degree 1 or 2.



We rule out degree 1 factors as above and this leaves us with eight candidates:

x
5+x

4+x
2+x+1, x

5+x
4+x

3+x+1, x
5+x

4+x
3+x

2+1, x
5+x

3+x
2+x+1,

and x
5 + x

4 + 1, x
5 + x

3 + 1, x
5 + x

2 + 1, x
5 + x+ 1.

If a degree 5 polynomial has no degree 1 factor, then the only way it can fail
to be irreducible is if it has both a degree 2 irreducible factor and a degree 3
irreducible factor. We determined all degree 2 and 3 irreducibles above. So
the only polynomials we have to cross of our list of eight are

(x2 + x+ 1)(x3 + x+ 1) = x
5 + x

4 + 1

and
(x2 + x+ 1)(x3 + x

2 + 1) = x
5 + x+ 1.

So we are left with six irreducibles of degree 5.
An advanced aside: Early in his spectacular career, Gauss came up

with an exact formula for the number of polynomials of degree n that are
irreducible modulo 2. When n is prime, his formula takes a particularly
simple form, and predicts that the number of these polynomials is exactly

2n − 2

n
.

When n = 5, Gauss’s formula predicts 25−2
5 = 30

5 = 6 such polynomials, in
agreement with our determination above.

Problem 3 (More rectangular boxing). You may recall that on problem
#15, you found that the distance from P to Q on the surface of a 1× 1× 2
rectangular box is

√
8. (The dashed lines in the figure below show one path

that achieves this minimum.) Surprisingly, Q is not the point on the surface
of the box which is farthest from P . Find the distance from P to the point
that is farthest from P .



P

Q �

Answer.

√
130

4
.

Solution. To get a feel for what’s going on here, let’s understand why the
shortest path from P to Q has length

√
8. Draw a net, and a Euclidean circle

of radius
√
8 centered at P on the net:

(You should check that the circular arcs of radius
√
8 centered at other rep-

resentatives of P determine points that are inside the circular arc shown, and
so do not lie on the circle of radius

√
8.)

When we fold this net onto the box, notice that all of the circular arcs
will lie on the back of the box; i.e., in the 1 by 1 square with Q in a corner.
Here is that square:



The solid lines bounding the shaded region form the circle of radius
√
8,

and the shaded region is the part outside of the circle. All the rest of the
box is inside the circle.

In particular — here’s the unintuitive part — there are points outside
this circle. In other words, Q is not the farthest point from P in the surface
metric.

Now increase the radius R. The point farthest from P will be the point
at which the circle of radius R centered at P collapses to a single point. By
symmetry, that point will lie on the diagonal of the 1 by 1 square starting at
Q. So we need to find R so that the points A and B shown in the diagram
correspond to the same point on the surface of the box.



To do that, let O be the origin, so that P = (1,−2). Notice that, for
points in S1, −1 < x < 0 and 0 < y < 1, while for points in S2, 0 < x < 1
and 0 < y < 1. Also notice that (x, y) in S2 corresponds to (−y, x) in S1

when the box is folded. Finally, recall that we want a point on the diagonal
y = 1 − x. So we need to find the x so that (x, 1 − x) and (x − 1, x) are
equidistant from P :

�
(x− 1)2 + (1− x+ 2)2 =

�
(x− 2)2 + (x+ 2)2.

Solving, x = 1
4 and y = 1− x = 3

4 . So the distance to the farthest point is

��
1

4
− 1

�2

+

�
3

4
− (−2)

�2

=

��
3

4

�2

+

�
11

4

�2

=

√
130

4
.

Authors. Problems and solutions were written by Mo Hendon, Paul
Pollack, and Joe Tenini.

Sources. The pictures of the octahedron and tetrahedron in Problem
1 are from Wikipedia; the decomposition of the tetrahedron shown in the
solution is from MatematicasVisuales:

http://www.matematicasvisuales.com/english/index.html

http://www.matematicasvisuales.com/english/index.html

