

Sponsored by: UGA Math Department and UGA Math Club
Team Round / 1 hour / 210 points
November 16, 2013

WITH SOLUTIONS

No calculators are allowed on this test. You do not have to provide proofs; only the answers matter. Each problem is worth 70 points, for a total of 210 points.

Problem 1 (Octahedron vs tetrahedron). Let O be the volume of a regular octahedron with edge length 1 , and let T be the volume of a regular tetrahedron with edge length 1 . Find the ratio $\frac{O}{T}$.

Answer. 4

Solution.

The key to the problem is to start with a tetrahedron of edge length 2 . On each triangular face, connect the midpoints of the sides. These lines partition the tetrahedron into 4 tetrahedra of edge length 1 and an octahedron of edge length 1 . We let
$T_{2}=$ volume of tetrahedron of edge length 2,
$T=$ volume of tetrahedron of edge length 1 ,
$O=$ volume of octahedron of edge length 2.
Then $T_{2}=2^{3} \cdot T$, and $T_{2}=4 T+O$. Hence, $O=4 T$, and $\frac{O}{T}=4$.

Problem 2 (Nonstandard primes). By a binary string, we mean a finite nonempty sequence of 0 s and 1 s , with no leading 0 s unless the string consists only of 0 . Listing strings by length, the first few examples are thus $0,1,10,11,101, \ldots$. We define non-carry addition $(+)$ and non-carry multiplication (\times) of binary strings by the usual grade-school algorithms for addition and multiplication but systematically ignoring carries. For example, $1+1=0$ with our definition, and

10101
10101
1101
$+\quad 11000$
while

101101
$\times \quad 10101$
00000
10101
10101
11101001

A prime is a binary string with more than one digit which cannot be written as a non-carry product except as $1 \times$ itself or itself $\times 1$. For example, 10 and 11 are prime, but 11101001 is not.

How many primes are there with exactly six digits?
Answer. 6

Solution. To each binary string $a_{d} a_{d-1} a_{d-2} \cdots a_{1} a_{0}$, we associate the polynomial $a_{d} x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}$. Then the rules for addition and multiplication correspond precisely to the rules for addition and multiplication of polynomials, except that addition and multiplication is always done modulo 2 . For example, $11 \times 11=101$, since modulo 2 ,

$$
(x+1)^{2}=x^{2}+2 x+1=x^{2}+1
$$

Remember that $2=0$ when one works modulo 2 .
Seen from this point of view, the problem is asking for the number of degree 5 polynomials that are irreducible when considered modulo 2 . To begin with, there are 2^{5} polynomials of degree 5 in total, namely

$$
P(x)=x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
$$

where each a_{i} is either 0 or 1 . (If you prefer to think in terms of strings, these are the strings $1 a_{4} a_{3} a_{2} a_{1} a_{0}$.)

As a warm up, let's determine the irreducibles of degree 2 . There are only four degree 2 polynomials considered mod 2 , namely $x^{2}+x+1, x^{2}+x$, $x^{2}+1$, and x^{2}. The second and fourth are clearly divisible by x. And $x^{2}+1$ is divisible by $x+1$; one easy way to see this is to use the remainder theorem. According to that result, the remainder when you divide a polynomial by $x+1$ is obtained by plugging in -1 . Working mod 2 , we have $-1=+1$, and

$$
1^{2}+1=2=0 .
$$

So $x^{2}+1$ is not irreducible. This leaves only $x^{2}+x+1$. This clearly leaves a remainder of 1 when divided by x, and if we plug in 1 , we get $1^{2}+1+1=1$, so $x^{2}+x+1$ is not divisible by $x+1$. Since we've ruled out degree 1 factors of $x^{2}+x+1$, we see that $x^{2}+x+1$ is irreducible, and in fact the only irreducible of degree 2 .

OK, let's try degree 3. Ruling out polynomials that are divisible by x, we are left with 4 candidates: $x^{3}+x+1, x^{3}+x^{2}+1, x^{3}+x+x^{2}+1$, and $x^{3}+1$. The final two are divisible by $x+1$, by the remainder theorem again, while the first two are not. But if a polynomial of degree 3 factors, then one of the factors must be linear. So $x^{3}+x+1$ and $x^{3}+x^{2}+1$ are irreducible, and are the only irreducibles of degree 3 .

If a polynomial of degree 5 factors, then it has a factor of degree 1 or 2 .

We rule out degree 1 factors as above and this leaves us with eight candidates:

$$
\begin{gathered}
x^{5}+x^{4}+x^{2}+x+1, \quad x^{5}+x^{4}+x^{3}+x+1, \quad x^{5}+x^{4}+x^{3}+x^{2}+1, \quad x^{5}+x^{3}+x^{2}+x+1, \\
\text { and } \quad x^{5}+x^{4}+1, \quad x^{5}+x^{3}+1, \quad x^{5}+x^{2}+1, \quad x^{5}+x+1 .
\end{gathered}
$$

If a degree 5 polynomial has no degree 1 factor, then the only way it can fail to be irreducible is if it has both a degree 2 irreducible factor and a degree 3 irreducible factor. We determined all degree 2 and 3 irreducibles above. So the only polynomials we have to cross of our list of eight are

$$
\left(x^{2}+x+1\right)\left(x^{3}+x+1\right)=x^{5}+x^{4}+1
$$

and

$$
\left(x^{2}+x+1\right)\left(x^{3}+x^{2}+1\right)=x^{5}+x+1
$$

So we are left with six irreducibles of degree 5 .
An advanced aside: Early in his spectacular career, Gauss came up with an exact formula for the number of polynomials of degree n that are irreducible modulo 2 . When n is prime, his formula takes a particularly simple form, and predicts that the number of these polynomials is exactly

$$
\frac{2^{n}-2}{n}
$$

When $n=5$, Gauss's formula predicts $\frac{2^{5}-2}{5}=\frac{30}{5}=6$ such polynomials, in agreement with our determination above.

Problem 3 (More rectangular boxing). You may recall that on problem $\# 15$, you found that the distance from P to Q on the surface of a $1 \times 1 \times 2$ rectangular box is $\sqrt{8}$. (The dashed lines in the figure below show one path that achieves this minimum.) Surprisingly, Q is not the point on the surface of the box which is farthest from P. Find the distance from P to the point that is farthest from P.

Answer. $\frac{\sqrt{130}}{4}$.
Solution. To get a feel for what's going on here, let's understand why the shortest path from P to Q has length $\sqrt{8}$. Draw a net, and a Euclidean circle of radius $\sqrt{8}$ centered at P on the net:

(You should check that the circular arcs of radius $\sqrt{8}$ centered at other representatives of P determine points that are inside the circular arc shown, and so do not lie on the circle of radius $\sqrt{8}$.)

When we fold this net onto the box, notice that all of the circular arcs will lie on the back of the box; i.e., in the 1 by 1 square with Q in a corner. Here is that square:

The solid lines bounding the shaded region form the circle of radius $\sqrt{8}$, and the shaded region is the part outside of the circle. All the rest of the box is inside the circle.

In particular - here's the unintuitive part - there are points outside this circle. In other words, Q is not the farthest point from P in the surface metric.

Now increase the radius R. The point farthest from P will be the point at which the circle of radius R centered at P collapses to a single point. By symmetry, that point will lie on the diagonal of the 1 by 1 square starting at Q. So we need to find R so that the points A and B shown in the diagram correspond to the same point on the surface of the box.

To do that, let O be the origin, so that $P=(1,-2)$. Notice that, for points in $S_{1},-1<x<0$ and $0<y<1$, while for points in $S_{2}, 0<x<1$ and $0<y<1$. Also notice that (x, y) in S_{2} corresponds to $(-y, x)$ in S_{1} when the box is folded. Finally, recall that we want a point on the diagonal $y=1-x$. So we need to find the x so that $(x, 1-x)$ and $(x-1, x)$ are equidistant from P :

$$
\sqrt{(x-1)^{2}+(1-x+2)^{2}}=\sqrt{(x-2)^{2}+(x+2)^{2}} .
$$

Solving, $x=\frac{1}{4}$ and $y=1-x=\frac{3}{4}$. So the distance to the farthest point is

$$
\sqrt{\left(\frac{1}{4}-1\right)^{2}+\left(\frac{3}{4}-(-2)\right)^{2}}=\sqrt{\left(\frac{3}{4}\right)^{2}+\left(\frac{11}{4}\right)^{2}}=\frac{\sqrt{130}}{4} .
$$

Authors. Problems and solutions were written by Mo Hendon, Paul Pollack, and Joe Tenini.

Sources. The pictures of the octahedron and tetrahedron in Problem 1 are from Wikipedia; the decomposition of the tetrahedron shown in the solution is from MatematicasVisuales:
http://www.matematicasvisuales.com/english/index.html

