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WITH SOLUTIONS

No calculators are allowed on this test. You do not have to provide
proofs; only the answers matter. Each problem is worth 70 points, for a total
of 210 points.

Problem 1 (Octahedron vs tetrahedron). Let O be the volume of a reg-
ular octahedron with edge length 1, and let T" be the volume of a regular
tetrahedron with edge length 1. Find the ratio %.

Answer. 4

Solution.



The key to the problem is to start with a
tetrahedron of edge length 2. On each trian-
gular face, connect the midpoints of the sides.
These lines partition the tetrahedron into 4
tetrahedra of edge length 1 and an octahe-
dron of edge length 1. We let

T5 = volume of tetrahedron of edge length 2,
T = volume of tetrahedron of edge length 1,
O = volume of octahedron of edge length 2.

Then Ty = 23 - T, and Ty = 4T + O. Hence, O = 4T, and % =4.

Problem 2 (Nonstandard primes). By a binary string, we mean a finite
nonempty sequence of Os and 1s, with no leading 0s unless the string con-
sists only of 0. Listing strings by length, the first few examples are thus
0, 1, 10, 11, 101, .... We define non-carry addition (+) and non-carry
multiplication (x) of binary strings by the usual grade-school algorithms
for addition and multiplication but systematically ignoring carries. For
example, 1 + 1 = 0 with our definition, and
10101
X 1101
10101 10101
+ 1101 while 00000
11000 10101
10101
11101001
A prime is a binary string with more than one digit which cannot be
written as a non-carry product except as 1 x itself or itself x 1. For example,
10 and 11 are prime, but 11101001 is not.
How many primes are there with exactly six digits?

Answer. 6



Solution. To each binary string agqaq_1a4_2 - - - a1ag, we associate the poly-
nomial agx® + ag_12% ' + -+ + a;x + ag. Then the rules for addition and
multiplication correspond precisely to the rules for addition and multiplica-
tion of polynomials, except that addition and multiplication is always done
modulo 2. For example, 11 x 11 = 101, since modulo 2,

(z+1)P=2+2r+1=2"+1

Remember that 2 = 0 when one works modulo 2.

Seen from this point of view, the problem is asking for the number of
degree 5 polynomials that are irreducible when considered modulo 2. To
begin with, there are 2° polynomials of degree 5 in total, namely

P(z) = 2° + agx® + azx® + ax2® + ayx + ay,

where each a; is either 0 or 1. (If you prefer to think in terms of strings,
these are the strings lajazasaiay.)

As a warm up, let’s determine the irreducibles of degree 2. There are
only four degree 2 polynomials considered mod 2, namely 22 +x + 1, 2% + ,
2241, and 2%, The second and fourth are clearly divisible by . And 2241 is
divisible by x4+ 1; one easy way to see this is to use the remainder theorem.
According to that result, the remainder when you divide a polynomial by z+1
is obtained by plugging in —1. Working mod 2, we have —1 = +1, and

1?+1=2=0.

So 22 +1 is not irreducible. This leaves only 22 + x + 1. This clearly leaves a
remainder of 1 when divided by x, and if we plug in 1, we get 12 +1+1 = 1,
so 22 4+ x + 1 is not divisible by x + 1. Since we’ve ruled out degree 1 factors
of 22 + 2 4+ 1, we see that 22 + x + 1 is irreducible, and in fact the only
irreducible of degree 2.

OK, let’s try degree 3. Ruling out polynomials that are divisible by =z,
we are left with 4 candidates: 23 + x4+ 1, 23 + 22+ 1, 23+ + 22 + 1, and
2%+ 1. The final two are divisible by x + 1, by the remainder theorem again,
while the first two are not. But if a polynomial of degree 3 factors, then one
of the factors must be linear. So 22 + z + 1 and 2 + 2% + 1 are irreducible,
and are the only irreducibles of degree 3.

If a polynomial of degree 5 factors, then it has a factor of degree 1 or 2.



We rule out degree 1 factors as above and this leaves us with eight candidates:

Ottt ra+l, Ottt a+l, S+t +a? 41, S+t a1,
and 2’ +zt+1, 2L2+22+1, LP+22+1, PLH+r+1l.

If a degree 5 polynomial has no degree 1 factor, then the only way it can fail
to be irreducible is if it has both a degree 2 irreducible factor and a degree 3
irreducible factor. We determined all degree 2 and 3 irreducibles above. So
the only polynomials we have to cross of our list of eight are

(+r+D@*+r+1)=2"+2+1

and
(P +z+ D@ +2°+1) =2 +2+ 1.

So we are left with six irreducibles of degree 5.

An advanced aside: Early in his spectacular career, Gauss came up
with an exact formula for the number of polynomials of degree n that are
irreducible modulo 2. When n is prime, his formula takes a particularly
simple form, and predicts that the number of these polynomials is exactly

2" — 2

n

. 5_
When n = 5, Gauss’s formula predicts 25—2 = % =

agreement with our determination above.

6 such polynomials, in

Problem 3 (More rectangular boxing). You may recall that on problem
#15, you found that the distance from P to () on the surface of a 1 x 1 x 2
rectangular box is v/8. (The dashed lines in the figure below show one path
that achieves this minimum.) Surprisingly, () is not the point on the surface
of the box which is farthest from P. Find the distance from P to the point
that is farthest from P.
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Solution. To get a feel for what’s going on here, let’s understand why the
shortest path from P to @ has length /8. Draw a net, and a Euclidean circle
of radius /8 centered at P on the net:

Q

(You should check that the circular arcs of radius /8 centered at other rep-
resentatives of P determine points that are inside the circular arc shown, and
so do not lie on the circle of radius \/g)

When we fold this net onto the box, notice that all of the circular arcs
will lie on the back of the box; i.e., in the 1 by 1 square with () in a corner.
Here is that square:



The solid lines bounding the shaded region form the circle of radius v/8,
and the shaded region is the part outside of the circle. All the rest of the
box is inside the circle.

In particular — here’s the unintuitive part — there are points outside
this circle. In other words, @) is not the farthest point from P in the surface
metric.

Now increase the radius R. The point farthest from P will be the point
at which the circle of radius R centered at P collapses to a single point. By
symmetry, that point will lie on the diagonal of the 1 by 1 square starting at
(). So we need to find R so that the points A and B shown in the diagram
correspond to the same point on the surface of the box.

Q Q

Q 0 / Q
R




To do that, let O be the origin, so that P = (1,—2). Notice that, for
points in S7, —1 < x < 0 and 0 < y < 1, while for points in S5, 0 < x < 1
and 0 < y < 1. Also notice that (z,y) in Sy corresponds to (—y,z) in S;
when the box is folded. Finally, recall that we want a point on the diagonal
y = 1 —x. So we need to find the = so that (z,1 — z) and (x — 1,z) are
equidistant from P:

VEe—12+ 1 —z+2)2=/(z—2)2+ (z+2)2

Solving, x = % andy=1—x= %. So the distance to the farthest point is

(G G ) () -

Authors. Problems and solutions were written by Mo Hendon, Paul
Pollack, and Joe Tenini.

Sources. The pictures of the octahedron and tetrahedron in Problem
1 are from Wikipedia; the decomposition of the tetrahedron shown in the
solution is from MatematicasVisuales:

http://www.matematicasvisuales.com/english/index.html


http://www.matematicasvisuales.com/english/index.html

