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WITH SOLUTIONS

Problem 1 (Mathematics for fun and profit). Here’s how the Big Bucks
Lottery works. When you buy a lottery ticket for $1, you get to choose 3
different numbers from {1, 2, 3, 4, 5, 6, 7}. Once you’ve bought all the tickets
you want, the lottery company randomly chooses 3 distinct numbers from
{1, 2, 3, 4, 5, 6, 7}. For each of your tickets that matches all three numbers
(jackpot!) you win $10. For each of your tickets that matches exactly 2
numbers, you win $3.

(a) (35 points) If you buy exactly one of every possible ticket, what will
your profit be?

(b) (35 points) What is the smallest number of tickets you can buy and
still be guaranteed to make a (positive!) profit?

Answer. (a) $11 (b) 7 (tickets)

Solution. (a) There are
(
7
3

)
= 35 different tickets, so it will cost you $35

to buy one of each. You’ll have one jackpot ($10), and for each 2 of the 3
winning numbers you’ll have 4 more tickets matching that pair (e.g., if 123
wins, you’ll also have 124, 125, 126, and 127). So your profit is

10 + 12 · 3− 35 = 11

dollars.



(b) It’s certainly possible to guarantee a profit with less tickets — in fact,
if you buy one less ticket, you might (worst case), miss the jackpot, but you
still get 12 winning pairs, for a profit of $2.

But, surprisingly, it’s possible to guarantee a profit with as few as 7
tickets. To see this, we’ll take advantage of a little bit of finite projective
geometry. The Fano plane is a geometry with 7 points, which we’ll call 1, 2,
3, 4, 5, 6, and 7. It’s often represented with this diagram:

There are only seven points in the geometry — the extra curves and lines
are there to indicate which points are to be considered collinear. Here are
the lines in this geometry:

{5, 2, 7}, {7, 1, 6}, {5, 3, 6}, {2, 4, 6}, {1, 4, 5}, {7, 4, 3}, {2, 1, 3}.

You may object that the last of these, {2, 1, 3}, doesn’t look like a line, but
they all satisfy the most important property of a line: two points determine
a unique line.

How can you use this to win the lottery? Simply buy the seven tickets
corresponding to the seven lines above. If one of them wins the jackpot,
you’ve paid $7 to win $10, a profit of $3. If none of them wins the jackpot,
then the three winning numbers are not collinear, so the 3 pairs determine
3 distinct lines — and you have the tickets corresponding to those lines! So
you’ve paid $7 to win 3 · $3 = $9, a profit of $2.

To see that you can’t guarantee a profit with six or fewer tickets, notice
that if you buy 6 tickets, you’ve covered 6 ·

(
3
2

)
= 18 pairs or less (less if, for

example, you buy 123 and 124). Since there are
(
7
2

)
= 21 pairs altogether, if

the winning ticket contains one of the (at least) 3 uncovered pairs, you win
neither the jackpot nor that pair, so you can win at most two pairs. Your



winnings are then at most $6, which at best offsets your $6 expense. So
at best you come out even. You should check that if you buy less than six
tickets, it’s possible that none of your tickets win anything.

If you’re thinking that this type of thing never happens in a real lot-
tery, think again. In his recent book How Not to Be Wrong: The Power of
Mathematical Thinking, Jordan Ellenberg describes the (now defunct) Mas-
sachusetts WinFall lottery game. It was more complicated than this example
— a ticket consisted of 6 out of 46 numbers — but it too offered a dispro-
portionately high payoff for tickets that matched some but not all numbers.
Several groups made millions of dollars exploiting this.

If you’re thinking the state of Massachusetts was not too bright for run-
ning such a lottery, think again — they pocketed hundreds of millions of
dollars. Think about that next time you consider buying a lottery ticket!

Problem 2 (A binary word problem). The Thue–Morse sequence t0, t1, t2, . . .
is a sequence of 0s and 1s defined by the rule

tn =

{
0 if n has an even number of 1s in its binary expansion,

1 otherwise.

For example, t0 = 0 and t13 = 1. If the terms of the sequence are concate-
nated, one obtains an infinite “word” in the letters 0 and 1 which begins

0110100110010110 . . . ,

where we take the starting “letter” to be t0 = 0. How many occurrences of
the string 11 are there in the initial segment

t0t1 . . . t2014t2015?

In other words, for how many integers 0 ≤ n < 2015 is tn = tn+1 = 1?

Answer. 336

Solution. The infinite string t0t1t2 . . . may be generated by the following
process: First, begin with 0, which is t0. Having constructed the string
t0 . . . t2j−1 (for some j ≥ 0), we form the string

t0t1 . . . t2j+1−1



by tacking on to the end of our current string its bitwise negation. (To
see why this makes sense, notice that the binary expansions of the numbers
2j, 2j + 1, . . . , 2j+1− 1 are formed by adding a leading 1 to the expansions of
0, 1, . . . , 2j − 1.) To illustrate the process, the first several steps are

0

01

0110

01101001

0110100110010110

01101001100101101001011001101001.

Let Aj and Bj be the number of occurrences of the strings 00 and 11 within
t0t1 · · · t2j−1. From the above process, we can read off that

Aj+1 = Aj + Bj,

since the only time we see a 00 comes from either the initial string of 2j

terms, or from seeing a 11 in its bitwise negation. For Bj, we have the more
complicated relation

Bj+1 = Aj + Bj +

{
1 if j is odd,

0 if j is even.

Notice that if j is odd, when we go from the initial string of 2j terms to the
string of 2j+1 terms, the ending 1 in the first string is connected with the
opening 1 in the bitwise-negated string; this explains the extra +1 we see
above for those j.

Starting with A0 = B0 = 0, we find successively A1 = B1 = 0, then
A2 = 0 and B2 = 1, then A3 = B3 = 1, then A4 = 2 and B4 = 3, then
A5 = B5 = 5, then A6 = 10 and B6 = 11, then A7 = B7 = 21, then A8 = 42
and B8 = 43, then A9 = B9 = 85, then A10 = 170 and B10 = 171, then
A11 = B11 = 341.

Now B11 is the number of solutions to tn = tn+1 with 0 ≤ n < 2047.
From this count, we need to subtract off the number of solutions for 2015 ≤
n < 2047. Since the binary expansion of 2047 consists of eleven 1s, it follows
that t2047−n is the bitwise negation of tn, for all 0 ≤ n ≤ 2047. So letting



k = 2047− n,

#{2015 ≤ n < 2047 : tn = tn+1 = 1}
= #{0 < k ≤ 32 : tk−1 = tk = 0}

= #{0 ≤ m ≤ 31 : tm = tm+1 = 0}.

The final expression here is almost our A5: A5 is the number of solutions to
tm = tm+1 = 0 for 0 ≤ m < 31. We only see a difference if t31 = t32 = 0. But
t31 = 1. So in fact, the last displayed quantity is A5 = 5. Hence, the final
answer is 341− 5 = 336.

Problem 3 (Be careful or you’ll lose a digit!). Dan D. Man (the D stands
for “Digit”) tabulates the leading decimal digits of each of the 2015 numbers
30, 31, . . . , 32014. He observes that 32014 has leading digit 8 and that the digit
9 appears 93 times as the leading digit. If A is the number of times that 1
appears the leading digit, and B the number of times that 2 appears, find
A + B.

Answer. 961

Solution. Consider the sequence `n giving the leading digits of 3n, for
n = 0, 1, 2, . . . . The consecutive terms of the sequence can be broken into
nonoverlapping groups of the following types:

a = {1, 3, 9}, b = {1, 3}, c = {1, 4}, d = {1, 5},
e = {2, 6}, f = {2, 7}, g = {2, 8}.

Since 32014 has leading digit 8, we know that the sequence `0, . . . , `2014 ends
with the appearance of a group of type g.

Let Na be the number of groups of type a that occur in `0, . . . , `2014, and
similarly for Nb thru Ng. Clearly,

3Na + 2(Nb + Nc + Nd + Ne + Nf + Ng) = 2015.

Since 9 appears 93 times as the leading digit, we know Na = 93; subtracting
Na from the preceding equation gives

2(Na + Nb + Nc + Nd + Ne + Nf + Ng) = 1922.



We seek Na + Nb + Nc + Nd + Ne + Nf + Ng, which is 1
2
· 1922 = 961.

Authors. Problems and solutions were written by Mo Hendon and Paul
Pollack.

Sources. The image of the Fano plane was “borrowed” from an MAA ar-
ticle on projective geometry: http://www.maa.org/community/maa-columns/
past-columns-card-colm/projective-geometry-the-fano-plane. Prob-
lem #3 was inspired by #25 on AMC 12B, 2004.
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