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WITH SOLUTIONS

No calculators are allowed on this test. 10 points for a correct answer, 0
points for an incorrect answer, and 2 points for an answer left blank.

1 Easy Problems

Problem 1. What is the closest integer to
√

9! · 9 +
√

9!/9,

where 9! = 9 · 8 · 7 · · ·1 denotes “9 factorial”?

(A) 0 (B) π (C) 9 (D)♥ 2008 (E) 106

Solution. This is just a fun fact for warmup (the exact value is approximately
2007.984). The intended solution was to notice that most of the answers are of the
wrong order of magnitude.

Alternate solution. Simplifying the expression gives 240
√

70. Because 8 <
√

70 <
9, the answer is between 240 · 8 = 1920 and 240 · 9 = 2160. Note that

√
70 is actually

very nearly 8 + 11
30

, which yields exactly 2008 when multiplied by 240. (Equivalently,
the square of the given number is 10

9
10!, which is near 4 million.)

Problem 2. How many ways are there to color the hexagonal regions of the diagram
below with the three colors red, green, and blue so that no two adjacent regions are
colored the same?



(A) 0 (B) 3 (C)♥ 6 (D) 12 (E) 16

Solution. Consider the regions labeled 1, 2, and 3 in the diagram below. Note that
they must all be different colors, and once their colors are chosen, the rest of the
coloring is determined uniquely. Thus, there are 3! = 6 possible colorings.

1 2

3

Connections. In general, determining whether a diagram like this is properly 3-
colorable is NP -complete, while determining the number of colorings is #P -complete.
In either case, the prevailing opinion among computer scientists is that this means
some large examples are intractable.

Problem 3. A chord of a circle is tangent to a smaller, concentric circle. Given that
the length of the chord is 10, find the area of the donut shape (“annulus”) in between
the two circles.

10

(A) 9π (B) 16π (C)♥ 25π (D) 50π (E) None of the above

Solution. Notice that there is a degree of freedom in the problem that we can exploit.
Indeed, suppose the smaller “circle” actually has radius 0 and so is a point. Then the
larger circle has diameter 10, and the “donut shape” is simply the area of the larger

circle, which is π
(

10
2

)2
= 25π.

Alternate solution. Suppose the inner radius is r and the outer radius is R. Then
by the Pythagorean theorem, the chord’s length is equal to 2 ·

√
R2 − r2. Thus,

R2 − r2 = 25, and the area in between the circles is

πR2 − πr2 = π
(

R2 − r2
)

= 25π.

Problem 4. How many equilateral triangles can be formed from the vertices of a
cube?



(A) 2 (B) 6 (C)♥ 8 (D) 12 (E) 24

Solution. There are no equilateral triangles with side-lengths equal to the side of
the cube or to the space (“long”) diagonal. Thus, all equilateral triangles have the
face diagonals as their sides.

Each of the twelve face diagonals participates in two equilateral triangles, but
each triangle has three sides, so there are 12 · 2

3
= 8 triangles total. It is interesting

to note that some of the vertices of a cube form a regular tetrahedron. How many
are there?

Alternate solution. Each triangle can be naturally identified with a single vertex,
namely the vertex that is adjacent to each of the vertices used in the triangle (see the
diagram below). There are 8 vertices, and thus 8 equilateral triangles.

b

Problem 5. What is x if x ≥ 1 and

xlog2 x = 16,

where log2 x denotes the logarithm of x to the base 2?

(A) 2 (B)♥ 4 (C) 6 (D) 8 (E) None of the above

Solution. This problem can easily be solved by trial and error. To find the answer
directly, take the base-2 logarithm of both sides to get

(log2 x) · (log2 x) = log2 16 = 4,

so log2 x = 2 and x = 22 = 4. (If x < 1, then we could also have log2 x = −2 and
x = 1/4.)

Connections. The function xlog x is an example of a function that is super-
polynomial (grows faster than any polynomial, like xn) yet sub-exponential (grows
slower than any exponential, like ax).

Problem 6. Four pencils are labeled with the names of the four people on a complete
UGA math tournament team (all the names are different). How many ways are there
to distribute each pencil to a team member so that nobody has their matching pencil?
Note that a team member may be given none, one, some, or all of the pencils.

(A) 9 (B) 16 (C) 27 (D)♥ 81 (E) None of the above



Solution. Consider any single pencil. In order to satisfy the desired condition, it may
be given to one of three team members (anyone but the corresponding person). We
must make four independent choices (one for each pencil) among three alternatives,
so there are 34 = 81 total possible combinations.

Problem 7. Boris has 20 stones in a single pile, and he is trying to split them up
so that each stone ends up in a pile by itself. Every time he splits a pile into two
new sub-piles, one of size x and the other of size y, he gets x · y points added to his
“score”. If Boris’s initial score is 0, what’s the largest final score he can attain?

(A)♥ 190 (B) 200 (C) 210 (D) 300 (E) 400

Solution. Imagine a thread connecting every pair of stones, and that whenever
Boris splits a pile, the threads connecting stones in different piles are cut. Then
Boris obtains exactly one point for each thread he cuts. It follows that his score is
independent of the manner in which he splits piles, and is the number of threads,

(

20

2

)

=
20 · 19

2
= 190.

Alternate solution. If we examine small cases (n stones instead of 20), then we
see that Boris’s score seems to be independent of the splitting order and is always
(

n

2

)

. (Indeed, the scores for an initial pile of 1, 2, 3, and 4 stones are 0, 1, 3, and 6
respectively, which we recognize as the first few triangular numbers.) By induction,
we can prove that this is always the case. Indeed, if we split a pile of n into piles of
x and y, we see that the resulting score is

x · y +

(

x

2

)

+

(

y

2

)

=

(

x + y

2

)

=

(

n

2

)

.

Problem 8. A point P is chosen inside a square ABCD so that AP = 3, BP = 4,
and CP = 5. Find DP .

b

A B

CD

P3
4

5
?

Note: this diagram is not to scale.

(A) 2 (B) 3 (C) 4 (D) 5 (E)♥ None of the above

Solution. If we conveniently “forget” that ABCD is a square and instead assume
it is a rectangle, there is a degree of freedom that we can exploit here. Suppose that



P actually lies on AB. Then BC = 3 since PBC is a 3–4–5 right triangle. Since
AD = BC = 3, it follows that DP = 3

√
2 by the Pythagorean theorem. To actually

show that the answer is the same for all rectangles, including the square case, we
must solve the problem differently. (However, it’s worth noting that deforming the
picture in different ways also gives the same answer. This supports the hypothesis
that it does not matter whether the rectangle is actually a square.)

Alternate solution. Suppose that when one projects P onto AB to obtain P ′, we
have AP ′ = w and P ′B = x. Similarly, suppose that if we project P onto BC to
obtain P ′′, we have BP ′′ = y and P ′′C = z. Then we are given that

AP 2 = w2 + y2 = 32,

BP 2 = x2 + y2 = 42,

CP 2 = x2 + z2 = 52,

and are asked to find DP =
√

w2 + z2. But adding the first and last equations, while
subtracting the second, gives w2 + z2 = 32 + 52 − 42 = 18, so DP =

√
18 = 3

√
2.

Note that if you actually solve for the variables, you obtain the rather ugly values

√

257 + 16
√

14

65
, 2

√

178 + 4
√

14

65
, 2

√

82 − 4
√

14

65
, and

√

913 − 16
√

14

65

for w, x, y, and z, respectively, so the approaches above are recommended.

Problem 9. How many digits are there in the first positive multiple of 6 that contains
only the digits 0 and 1 (in its base 10 representation)?

(A) 3 (B)♥ 4 (C) 5 (D) 6 (E) None of the above

Solution. Such a number must be even, so it must end with a 0. By the standard
test for divisibility by three, the number of 1s must be divisible by three. Thus the
smallest number is 1110, which has four digits.

Connections. In general, for any number k, one can prove that some multiple
of k consists only of the digits 0 and 1. Indeed, consider all of the numbers of
the form 1, 11, 111, . . . . By the pigeonhole principle, some two of these leave the
same remainder after division by k. (There are only k possible remainders, but
infinitely many such numbers.) But then their difference (11 · · ·11) − (1 · · ·1) =
11 · · ·1100 · · ·00 is divisible by k.

This is connected to the decimal expansions of 1/p for primes p (and other num-
bers, too). For example, because 1/7 = 0.142857, it follows that 7 | 111111. Indeed,
142857 · 7 = 999999 = 111111 · 9.



2 Medium Problems

Problem 10. In the diagram below, the three circles have unit radius and pass
through one another’s centers. Find the area of the shaded region.

(A)♥ π
6

(B) π
3
−

√
3

4
(C) π

3
−
√

3 (D)
√

3
4

(E) None of the above

Solution. Consider the diagram below. It was obtained from the diagram in the
problem by cutting off one piece and moving it. It follows that the desired area is
simply one-sixth of the area of one of the circles, which is π/6.

Alternate solution. By making full use of symmetry, it’s possible to actually see six
regions like those in the problem fill up a circle:

Problem 11. How many non-negative integers less than 1000 can be expressed as

bxc + b2xc + b5xc

for some real value of x, where bxc denotes the greatest integer less than or equal to
x (sometimes written [x] instead)?



(A) 500 (B) 545 (C) 600 (D)♥ 750 (E) 1000

Solution. Suppose that x is between n and n + 1
10

, where n is an arbitrary integer.
Then bxc+b2xc+b5xc = n+2n+5n = 8n. Similarly, we can compute what happens
in the other ten intervals of length 1

10
:

interval bxc b2xc b5xc sum
n + 0.0 ≤ x < n + 0.1 n 2n 5n 8n
n + 0.1 ≤ x < n + 0.2 n 2n 5n 8n
n + 0.2 ≤ x < n + 0.3 n 2n 5n + 1 8n + 1
n + 0.3 ≤ x < n + 0.4 n 2n 5n + 1 8n + 1
n + 0.4 ≤ x < n + 0.5 n 2n 5n + 2 8n + 2
n + 0.5 ≤ x < n + 0.6 n 2n + 1 5n + 2 8n + 3
n + 0.6 ≤ x < n + 0.7 n 2n + 1 5n + 3 8n + 4
n + 0.7 ≤ x < n + 0.8 n 2n + 1 5n + 3 8n + 4
n + 0.8 ≤ x < n + 0.9 n 2n + 1 5n + 4 8n + 5
n + 0.9 ≤ x < n + 1.0 n 2n + 1 5n + 4 8n + 5

(After this, if n + 1.0 ≤ x < n + 1.1, the sum is 8n + 8.) It follows that the only
obtainable numbers are those that leave a remainder of 0, 1, 2, 3, 4, or 5 upon
division by 8 (and conversely, all such numbers are obtainable). This is 6

8
= 3

4
ths of

all numbers, so our answer is 1000 · 3
4

= 750.

Problem 12. What are the last two digits of

222
2
2
2
2
2
2
2

?

Recall that xyz

means x(yz). Therefore, if f(1) = 2 and f(n) = 2f(n−1) for n > 1, the
number above is f(10).

(A) 16 (B)♥ 36 (C) 56 (D) 76 (E) 96

Solution. Writing down the last two digits of the powers 2n, one discovers that
they are periodic with period 20, ignoring the first two powers:

01, 02, 04, 08, 16, 32, 64, 28, 56, 12, 24, 48, 96, 92, 84, 68, 36, 72, 44, 88,

76, 52, 04, . . .

So, to find the answer, we only need to know the remainder of 22·
·

·

modulo 20. Using
the above table, one discovers that the powers 2n mod 20 are periodic with period 4,
again ignoring the first two powers:

01, 02, 04, 08,

16, 12, 04, . . .



But clearly a “power-tower” of at least two 2s is divisible by 4, so a tower that is
one taller is congruent to 24 ≡ 16 (mod 20). Finally, a tower one taller than that is
congruent to 216 ≡ 36 (mod 100). Thus the final two digits of any tower of at least
four 2s are 36.

Connections. By modifying this proof slightly (requiring the use of the general-
ization of Fermat’s Little Theorem involving Euler’s totient function), one can show
that any sufficiently large tower

kk·

·

·

is eventually constant modulo m for any fixed k and m. Moreover, it becomes constant
rather quickly. (In the problem above, one might be able to compute exact values
of small towers of 2s; they are 2, 4, 16, and then 65536, which some people have
memorized for its usefulness in computer programming or because of the adjacent
Fermat prime 65537. From that point on, the final two digits are constant, namely
36.)

Problem 13. The midpoints of the sides of a (not necessarily convex) pentagon are,
in order,

(2, 1) (2,−1) (−1,−2) (−2, 1) (0, 2)

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

q

q

q

q

q

Which of the following was a vertex of the pentagon? (The midpoints are marked in
the grid above.)

(A) (0,0) (B) (0,1) (C) (1,0) (D)♥ (1,1) (E) (1,2)

Solution. Consider the vertices a, b, c, d, e of the pentagon as vectors. Then for the
side connecting a and b, we are given the midpoint mab = a+b

2
. From this and the

four other analogous expressions, we can recover

a =
a + b

2
− b + c

2
+

c + d

2
− d + e

2
+

e + a

2
= mab − mbc + mcd − mde + mea.



(If this expression seems random, note that the sum of all of the midpoint values
gives a + b + c + d + e, so subtracting off (b + c) + (d + e) = 2mbc + 2mde will leave a.
This is precisely the sum of mab, mcd, and mea minus the sum of mbc and mde.)

Thus, we can recover the five original vertices as (1, 1), (3, 1), (1,−3), (−1,−1),
and (−1, 3).

Alternate solution. A perhaps easier solution is to simply check the possible an-
swers by successively reflecting them over the provided midpoints and seeing whether
or not after five reflections, the pentagon closes up on itself.

Problem 14. Evaluate √
33 · 34 · 35 · 36 + 1.

(A) 1089 (B) 1091 (C) 1190 (D) 1191 (E)♥ None of the above

Solution. Suppose the problem asked to evaluate
√

(x − 1) · x · (x + 1) · (x + 2) + 1

instead. Then we can expand the interior of the square root as

(x − 1) · x · (x + 1) · (x + 2) + 1 = x4 + 2x3 − x2 − 2x + 1 = (x2 + x − 1)2.

In our case, x = 34 and so we obtain 342 + 34 − 1 = 1189.
Alternate solution. Let I = 33 · 34 · 35 · 36 + 1. Working mod 9, I ≡ 1, while

A2 ≡ D2 ≡ 0 and B2 ≡ C2 ≡ 1. This eliminates answers A and D. Next, working
mod 100, I ≡ 33 · 34 · 7 · 18 · 10 + 1 and 33 · 34 · 7 · 18 ≡ 2 (mod 10), so I ≡ 21
(mod 100). But B2 ≡ 912 ≡ 92 ≡ 81 (mod 100) and C2 ≡ 0 (mod 100), so none of
A, B, C, D equals

√
I.

Problem 15. Suppose

a + 4b + 9c + 16d + 25e = −13,

4a + 9b + 16c + 25d + 36e = −8,

9a + 16b + 25c + 36d + 49e = 3.

Find

16a + 25b + 36c + 49d + 64e.

(A) 2 (B) 8 (C) 16 (D) 18 (E)♥ 20

Solution. By taking the difference between consecutive rows, we find that

3a + 5b + 7c + 9d + 11e = 13 − 8 = 5,

5a + 7b + 9c + 11d + 13e = 8 − (−3) = 11.



By taking the differences between consecutive rows again, we find that

2a + 2b + 2c + 2d + 2e = 11 − 5 = 6.

Adding this back to the last row of the previous table, we find that

7a + 9b + 11c + 13d + 15e = 11 + 6 = 17.

Finally, we add this back again to the last row given in the problem statement to find
that

16a + 25b + 36c + 49d + 64e = 3 + 17 = 20.

Alternate solution. We can find specific values of a, b, c, d, e that work by supposing
d = e = 0 and solving the resulting system of equations to get a = 0 as well, while
b = 8 and c = −5. It follows that

25b + 36c = 25 · 8 − 36 · 5 = 200 − 180 = 20.

Third solution. Let f(x) = a(x+1)2 + b(x+2)2 + c(x+3)2 +d(x+4)2 + e(x+5)2.
Then f is a quadratic polynomial, say f(x) = px2 + qx + r. Since f(0) = 13, r = 13.
Since f(1) = 8 and f(2) = 3, we have p+ q = 5 and 4p+2q = 16, so p = 3 and q = 2.
Therefore, f(x) = 3x2 + 2x − 13, and f(3) = 20.

Problem 16. How many of the four 9-digit numbers

111,222,333

111,333,222

222,333,111

333,222,111

are divisible by 13?

(A) 0 (B) 1 (C)♥ 2 (D) 3 (E) 4

Solution. There is a little-known test for divisibility for 7, 11, and 13 simultaneously.
Divide the candidate number into groups of three, like the standard grouping by
commas. Then alternately subtract and add these groups. If the result is divisible
by 13 (or 7 or 11), then so was the original number. The reason this test works is
precisely analogous to why the usual test for divisibility by 11 works; that is, we have
7 · 11 · 13 = 1001 = 103 + 1.

When we apply this to this problem at hand, we see immediately that because
111 + 222 = 333, the second and third numbers are divisible by 13. The other two
are divisible by 13 if and only if 222 is as well, but 222 = 2 · 3 · 37, so they are not.

Of course, this problem may be solved by trial division as well. It is generally useful
to be able to quickly compute a large number n modulo a small number k quickly
using a digit-by-digit approach, and without actually computing the quotient.



Alternate solution. You can apply another test for divisibility for 13. Take four
times the last digit of a number and add it to the remaining leading truncated number.
The original number was divisible by 13 if and only if the new number is. For example,
507 7→ 50 + 4 · 7 = 78 = 6 · 13, so 507 is divisible by 13. Can you figure out why this
works?

Problem 17. Solve for the integer n:

35 + 545 + 625 = 245 + 285 + n5.

(A) 64 (B) 66 (C)♥ 67 (D) 70 (E) 77

Solution. The final digit of n5 is the same as the final digit of n for all integral values
of n. Thus, the final digit of n must be 7. We can perform an order of magnitude
calculation to see that n = 67.

In order to be more sure, we can analyze the equation modulo 3 as well. Here
again, upon division of 3, the remainders of n5 and n are the the same. It follows
that the remainder of n upon division by 3 is 1. Thus n could only be 37, 67 or 97,
but 37 is clearly too small and 97 is clearly too large.

Connections. Euler’s sum of powers conjecture said that if the sum of n kth powers
of positive integers is itself a kth power, then n is at least k. This was disproven by
a computer search by L. J. Lander and T. R. Parkin in 1966 with the example

275 + 845 + 1105 + 1335 = 1445.

Later, Lander, Parkin, and John Selfridge would conjecture that if
∑n

i=1 ak
i =

∑m

j=1 bk
j

where k > 3 and ai 6= bj are positive integers, then m + n ≥ k. This problem
contradicts neither of these conjectures, but is the smallest example of its particular
kind, discovered by the same team of Lander, Parkin, and Selfridge in 1967.

Problem 18. If cos θ = 1
3
, find cos 5θ.

(A) 1
243

(B) 41
243

(C) 100
243

(D) 231
243

(E)♥ 241
243

Solution. There is a trigonometric identity

cos 5θ = cos5 θ − 10 cos3 θ sin2 θ + 5 cos θ sin4 θ.

Since in this case, sin2 θ = 1 − cos2 θ = 8
32 , we have

cos 5θ =
1 − 10 · 8 + 5 · 82

35
=

241

243
.

Of course, no one is expected to remember this identity. It can be derived by
repeated applications of the sum-of-angles identities for cosine and sine, but the easiest
way to derive it is to raise Euler’s formula

eiθ = cos θ + i sin θ



to the fifth power, using the Binomial Theorem to obtain

ei·5θ =
(

eiθ
)5

=
(

cos5 θ − 10 cos3 θ sin2 θ + 5 cos θ sin4 θ
)

+ i
(

5 cos4 θ − 10 cos2 θ sin3 θ + sin5 θ
)

.

By Euler’s identity applied to the left-hand side, it follows that the real part of the
right-hand side is cos 5θ, as desired.

Alternate solution. It is possible to avoid complex numbers by using rotation
matrices. (This is equivalent, as the complex number a + bi can be identified with
the 2 × 2 real matrix

(

a −b
b a

)

.) Let A be the rotation matrix

(

cos θ − sin θ
sin θ cos θ

)

=

(

1/3 −
√

8/3√
8/3 1/3

)

=
1

3

(

1 −
√

8√
8 1

)

.

Then

A2 =
1

9

(

−7 −2
√

8

2
√

8 −7

)

and so A4 =
1

81

(

17 28
√

8
∗ ∗

)

,

so
(

cos 5θ − sin 5θ
sin 5θ cos 5θ

)

= A5 = A4 · A =
1

243

(

17 + 28 · 8 ∗
∗ ∗

)

,

and cos 5θ =
241

243
.

Connections. It’s interesting to note that the answer, approximately equal to
0.992, is very close to 1! This is not entirely accidental. As a warmup, consider
three pentagons lying in the same plane and sharing a single vertex. Their angles,
each equal to 108◦, together make up 324◦, short of a full circle by 36◦. If we want
them to meet, then we have to fold up into the third dimension. By doing this and
continuing the resulting pattern, we obtain a dodecahedron, a regular polyhedron
made up of twelve pentagons. Because 36◦ is the smallest remaining angle one can
obtain with triangles, squares, or pentagons, the resulting polyhedron is the largest
regular polyhedron by volume if the edge length is constant.

It so happens that the dihedral angle of a regular tetrahedron is arccos 1
3
. (The

dihedral angle is formed by the two planes of adjacent sides.) The solution to this
problem suggests that five tetrahedra that share a common edge come together to
almost complete a full 360◦. In order to make them meet, we must “fold up into the
fourth dimension”. If we do this, then we get a four-dimensional regular polychoron

(sometimes people just say polytope beginning with dimension 4). As with the dodec-
ahedron, because the leftover angle is so small, the resulting polychoron is very large;
indeed, it is the largest, called the 600-cell or hexacosichoron because it is composed
of 600 regular tetrahedra.

Problem 19. In the figure below, the circle is tangent to the hypotenuse and the
extensions of the two legs of a 3–4–5 right triangle. Find the radius of the circle.



A

B

C

b

b

b

b

O

4

3
5

Note: this diagram is not to scale.

(A) 2 + 2
√

2 (B)♥ 6 (C) 7 (D) 8 (E) None of the above

Solution. Recall the usual formula for the radius of the incircle of a triangle ABC
(the incircle is tangent to the sides, but inside the triangle) with sides a, b, and c.
We have A = rs, where A is the area, r is the inradius, and s = a+b+c

2
is the semi-

perimeter. (This can be seen easily by considering the areas of triangles ABI, BCI,
and CAI where I is the incenter.)

There is a general concept in triangle geometry of what happens when one flips
the sign of a side-length, say mapping a 7→ −a. In this case, the incircle is sent to the
excircle on the side a, while the semi-perimeter is sent to s 7→ sa = −a+b+c

2
. (Area is

preserved, which one can see by considering Heron’s formula for the area of triangle.)
Thus, we may recover the formula for the radius of the a excircle as A = rasa. In our
case, A = 6 while sa = 3+4−5

2
= 1, so ra = 6.

Other facts from this general theory is that symmetric quantities (such as the
radius of the circumcircle, or the “location” of the median) can only depend on
symmetric functions of the side lengths, such as (a+b+c)(−a+b+c)(a−b+c)(a+b−c)
(c.f. Heron’s formula) or abc (c.f. the formula for the circumradius 2R = abc/A).
Thus we can relate the worlds of formulas (algebra) and shapes (geometry). This
approach can be very fruitful, such as here where it gave us four formulas for the
price of one!

Alternate solution. By modifying the standard proof that A = rs, we can obtain
a direct proof of the above result that A = rasa. Indeed, the area ABC is the sum
of the areas ABO and ACO minus the area BCO. But by the base-height triangle
formula, the area ABO = r·c

2
, and similarly for the other triangles. It follows that

ABC = ABO + ACO − BCO =
rcc + rab − raa

2
= ra

c + b − a

2
= rasa,

as desired.
Third solution. It is also possible to solve this problem in coordinates. Recall

that if ax + by + c = 0 is the normalized form of a line (that is, a2 + b2 = 1), then
ax0 + by0 + c is the signed distance from the point (x0, y0) to the line.

Set up a coordinate system by letting A = (0, 0), B = (0, 3), and C = (4, 0).
Then the center of the excircle O = (r, r) for some value of r, because it is then at



equal distance r from the extensions of lines AB and AC. The equation of BC is
x
4

+ y

3
− 1 = 0, or in normalized form 3

5
x + 4

5
y − 12

5
= 0. (As a check, we can confirm

that A = (0, 0) is 12
5

away from line BC, which we can compute using the base-height
formula for the area of ABC applied to two different sides.) Thus, the condition that
O has distance r from BC is

r =
3

5
r +

4

5
r − 12

5
,

which is satisfied when r = 6.

3 Hard Problems

Problem 20. If three positive integers a < b < c satisfy a2 + b2 = c2 (and thus
correspond to the lengths of the sides of a right triangle) and a, b, and c share no
common factor other than 1, we say that a, b, c forms a primitive Pythagorean triple.

For example, 16, 63, 65 is a primitive triple, while 39, 52, 65 and 25, 60, 65 are
not because they are multiples of the 3, 4, 5 and 5, 12, 13 triples, respectively. What
is b − a in the other primitive Pythagorean triple where the hypotenuse c is 65?

(A) 11 (B) 25 (C) 41 (D) 59 (E)♥ None of the above

Solution. Each Pythagorean triple corresponds to a rational complex number of unit
modulus (absolute value). For example, the triple 3, 4, 5 corresponds to the number
3+4i

5
because we can compute that

∣

∣

∣

∣

3 + 4i

5

∣

∣

∣

∣

2

=
32 + 42

52
= 1.

In this notation, non-primitive triples such as 39, 52, 65 correspond to the same
value as the underlying primitive triple, since 39+52i

65
= 3+4i

5
.

Because the product of two rational complex numbers of units modulus gives
another (recall that |zw| = |z| |w|), this procedure also gives us an easy way to
generate Pythagorean triples! For example,

(

3 + 4i

5

)2

=
−7 + 24i

25
,

so 7, 24, 25 is a primitive Pythagorean triple. Note also that this raises the issue that
each triple actually corresponds to eight different complex numbers, such as in this
case ±7±24i

25
and ±24±7i

25
.

In any case, by multiplying the complex numbers corresponding to Pythagorean
triples with hypotenuses 5 and 13, we will obtain one with hypotenuse 65. Thus we



obtain

3 + 4i

5
· 5 + 12i

13
=

−33 + 56i

65
3 − 4i

5
· 5 + 12i

13
=

63 − 16i

65

(The other possible choices in ±3±4i
5

and ±5±12
13

as well as ordering all produce these
same two triples.) The second triple is the one given in the problem, so the first one
is our desired triple. Our final answer is 56 − 33 = 23.

Note that using this idea, we can give Pythagorean triples the structure of a
group, which ends up being isomorphic to an infinite direct sum of infinite cyclic
groups (modulo the issue of distinguishing the eight different numbers, which can be
handled adequately).

Connections. Furthermore, this problem is related to primes in the Gaussian
integers (complex numbers with integral real and imaginary parts). Indeed, any
number that factors in the Gaussian numbers but not the usual integers, such as
5 = (2 + i)(2− i), gives rise to a Pythagorean triple by squaring one of its factors, as
in (2 + i)2 = 3 + 4i.

Alternate solution. The primitive Pythagorean triples are parameterized by

(p2 − q2, 2pq, p2 + q2)

for relatively prime integers p and q exactly one of which is odd. The given Pythagorean
triple corresponds to p = 8, q = 1. A quick check shows that p2 + q2 = 65 only when
(p, q) = (8, 1) or (p, q) = (7, 4). So the other Pythagorean triple is (33, 56, 65) where
b − a = 23.

Problem 21. Compute

(104 + 26) (184 + 26) (264 + 26) (344 + 26) (424 + 26)

(64 + 26) (144 + 26) (224 + 26) (304 + 26) (384 + 26)
.

(A) 53 (B)♥ 97 (C) 181 (D) 221 (E) None of the above

Solution. The structure of the numbers here suggests an algebraic approach. Indeed,
recall Sophie Germain’s identity

x4 + 4y4 = (x2 + 2xy + 2y2)(x2 − 2xy + 2y2),

or the special case useful in our problem since 4 · 24 = 26 = 64,

x4 + 64 = (x2 + 4x + 8)(x2 − 4x + 8) = (x(x + 4) + 8) · (x(x − 4) + 8).

(Note that the reason x4 + 4y4 factors without complex numbers while the arguably
similar x2 + 4y2 does not is related to the fact that there is “more room” or “more
symmetries” in four dimensions.)



If we apply this to our problem, we see that the factor (104 + 64) splits into
(102 − 4 · 10+8) · (102 +4 · 10+8) or equivalently (10 · 6+8) · (10 · 14+8). The factor
beneath it, (64 + 64) similarly splits into (6 · 2 + 8) · (6 · 10 + 8). Thus we see the
potential for cancellation! Indeed, all but two terms cancel in a telescoping fashion
until only

42 · 46 + 8

6 · 2 + 8

is left. This we can compute is 1940/20 = 97.

Problem 22. In triangle ABC below, CA = 5, AB = 6, and BC = 7. The inscribed
circle is tangent to the sides BC, AC, and AB at points P , Q, and R, respectively.
The lines AP , BQ, and CR concur (all intersect) at the point X. Find the ratio of
the area of XBC to the area of ABC.

b

b

b

P

Q
R

b X

A

C B

Note: this diagram is not to scale.

(A) 2/9 (B) 1/4 (C) 7/18 (D)♥ 6/13 (E) None of the above

Solution. The point X is called the Gergonne point and has barycentric coordinates
(1/sa, 1/sb, 1/sc), so the area of XBC is 1

sa
/( 1

sa
+ 1

sb
+ 1

sc
) = 1

2
/13

12
= 6

13
of the area of

ABC. (Recall that sa = b+c−a
2

and similarly sb = a+c−b
2

and sc = a+b−c
2

.)
Let’s recall the meaning of barycentric coordinates, and then derive the Gergonne

point’s coordinates. If X is a point in ABC, then we say it has barycentric coordinates
(x : y : z) if the ratio of the areas XBC : AXC : ABX is x : y : z. As a note, we
usually work unnormalized, so (x : y : z) is the same point as (kx : ky : kz) for
any nonzero k. Equivalently, suppose that we extend AX so that it meets side BC
at a point P ; then the barycentric coordinates of X are ( : y : z) if the point P
divides BC in a ratio of CP : PB = y : z. This is equivalent because then the ratios
APC : APB = XPC : XPB = y : z by the base-height area formula; it follows that
AXC : AXB = (APC − XPC) : (APB − XPB) = y : z as well. Note also that
these coordinates somewhat implicitly prove (or assume) Ceva’s theorem.



b

A

PC B

X

This formulation gives the best system of coordinates in an arbitrary triangle.
For example, the vertex A has coordinates (1 : 0 : 0) while the midpoint of BC has
coordinates (0 : 1 : 1). The median from A thus has equation y = z, and so it
follows that the centroid, the intersection of the medians, has coordinates (1 : 1 : 1).
Similarly, the usual Cevian relation for angle bisectors means that the incenter has
coordinates (a : b : c).

In our case, because tangents from the same point to the same circle have equal
length, we know AQ = AR, BP = BR, and CP = CQ. By solving the simple system
of linear equations BP + PC = BC = a, CQ + QA = CA = b, and AR + RB =
AB = c, we discover that AQ = AR = sa, BP = BR = sb, and CP = CQ = sc. This
means that the ratios of the areas are like (sbsc : sasc : sasb) = (1/sa : 1/sb : 1/sc).
(Note the slightly-surprising inverses here; without them, we would have the Nagel

point.)
Disclaimer. In the above discussions, we have disregarded signedness of areas;

all areas were assumed positive. To extend barycentric coordinates outside of the
triangle, one must be more careful.

Problem 23. The complex number −5+3i has a unique representation in base 1+ i,
that is, as a sum of powers of 1+i, some with coefficient 0 and some with coefficient 1.
Alternatively, there exists a unique finite set P of non-negative integers so that

−5 + 3i =
∑

p∈P

(1 + i)p.

How many 1-coefficients are in the representation, or alternatively, how many elements
are there in P ?

For convenience, we have included a scratch complex plane, with the powers of
1 + i (which are 1, 1 + i, 2i, −2 + 2i, −4, −4 − 4i, . . . ) marked with circles. The
target −5 + 3i is also noted, with a triangle.



b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

ut

bc

bc

bcbc

bc

bc

(A) 2 (B)♥ 3 (C) 4 (D) 5 (E) 6

Solution. The correct representation is 110101+i, that is,

−5 + 3i = (1 + i)4 + (1 + i)3 + (1 + i)1.

Thus the set P = {1, 3, 4} and the answer is 3.
In order to discover this, we can simply draw the representations of Gaussian

integers (complex numbers with integral real and complex parts) in base 1 + i. If we
do this, then we obtain the fractal pattern below!

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

ut

bc

bc

bcbc

bc

Here’s what’s going on: with a single digit, you can write 0 or 1. With two digits,
you can write 1 + i plus 0 or 1, which is 1 + i or 2 + i. With three digits, you can
write 2i plus 0, 1, 1+ i, or 2+ i. Continuing this, you get the spiraling fractal pattern
illustrated. From it, we see that −5 + 3i requires 5 digits, and with some thought we
can read off the individual digits as 110101+i.

Note that “half” of the Gaussian integers can be written uniquely as a sum of
powers of 1 + i. (The other half can be written as i minus a sum of powers of 1 + i.)
Contrast this with other bases, such as i − 1, where every Gaussian integer has a
unique representation.

Connections. Donald Knuth has considered complex bases, although he focused
on “quater-imaginary base 2i” with four coefficients 0, 1, 2, and 3.



Also, the fractal under consideration is called a dragon curve, and is illustrated in
more detail below. See http://en.wikipedia.org/wiki/Dragon_curve for different
kinds of dragon curves.
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Problem 24. Suppose that A and B are 3×3 matrices with integral entries and that
AB−BA ≡ I (mod 3), where I is the 3×3 identity matrix. Find AB3−B3A mod 3.

(A)♥ 0 (B) I (C) B (D) B2 (E) None of the above

Solution. Because AB = BA + I, we can expand

AB3 = AB · B2 = BAB2 + B2

= B(AB · B) + B2 = B(BAB + B) + B2

= B(B(AB) + B) + B = B(B(BA + I) + B) + B2

= B3A + 3B2,

so AB3 − B3A = 3B2. But we are working modulo 3, so this is zero.
Note that it cannot be the case that B2 = 0, because if so, B has rank at most

1, so AB and BA have rank at most 1. But then AB − BA has rank at most 2 and
cannot equal the identity, which has full rank of 3.

Alternate solution. There are many matrices A and B that work here, but perhaps
the simplest pair is

A =





0 1 0
0 0 −1
0 0 0



 and B =





0 0 0
1 0 0
0 1 0



 .

In this case B3 = 0, and so AB3 − B3A = A · 0 − 0 · A = 0 as well.
Connections. The operation [A, B] = AB − BA is called the commutator of A

and B, and essentially it gives a measure of the extent to which commutativity fails.



Suppose we want to build the simplest possible (associative) algebra involving
two non-commutative elements a and b. In order for things to behave normally, we
require that addition be commutative and associative as usual. Multiplication will
be associative as well, but obviously not commutative since we wish to have non-
commutativity. Now, what is the simplest way in which commutativity can fail? We
should let the commutator [a, b] be the simplest possible non-zero thing, which is 1!

This equation has many connections to math and physics. For example, it is the
canonical commutation relation of quantum mechanics, which says that [x, p] = i~
where x and p are operators measuring position and momentum, respectively; this
relation implies the Heisenberg uncertainty principle!

We can also interpret the equation in the context of differential operators. Indeed,
suppose that D is the operation “take the derivative with respect to x” while x is the
operation “multiply by x”. Then for any function f ,

([D, x])(f) = (Dx − xD)(f) = D(xf) − x(Df) = f + xf ′ − xf ′ = f,

so indeed [D, x] = 1, the identity operator. In this context, we can show that in
general [D, xn] = nxn−1, so if p is a polynomial in x, [D, p] functions as a formal
derivative. (Note that the two example matrices given above correspond to these
operations, except modulo 3 and modulo x3. For example, the −1 in A above means
that D(x2) = 2x ≡ −x (mod 3).)

Problem 25. When one expands (x + y)2008 as

1 · x2008 + 2008 · x2007y + 2015028 · x2006y2 + · · · + 1y2008,

how many of the coefficients are odd?

(A) 6 (B) 96 (C)♥ 128 (D) 250 (E) 502

Solution. Consider the first few rows of Pascal’s triangle, which corresponds to the
binomial coefficients that appear in the expansion of (x + y)n:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

Notice that the number of odd numbers in each row is a power of 2. One can guess
that this is true for every row of the triangle, and thus the answer must be 128 by
elimination. We include three proofs of this fact below.



(In fact, we can say more. If there are h 1s in the binomial representation of n,
then there will be 2h odd coefficients in the expansion of (x + y)n. Since 2008 =
111110110002, there will be 27 = 128 odd coefficients.)

First proof. Let n = nk2
k + nk−12

k−1 + · · ·+ n0 be the binary expansion of n. We
wish to find the number of coefficients in (x + y)n which are not equal to 0 (mod 2).
Notice that (x + y)2 ≡ x2 + y2 (mod 2). (This is sometimes called “Freshman’s
Dream” or the high school student’s binomial theorem. More commonly, it is known
as the characteristic 2 binomial theorem.) By induction, it also follows that

(x + y)4 = ((x + y)2)2 ≡ (x2 + y2)2 ≡ x4 + y4 (mod 2),

etc. for any power of 2. Therefore, modulo 2, we have that

(x + y)n = (x + y)nk2k · · · (x + y)n020 ≡
(

x2k

+ y2k
)nk

· · · (x + y)n0,

where we treat a parenthesized expression raised to the 0th power as simply omitted.
For example,

(x + y)2008 ≡ (x1024 + y1024)(x512 + y512)(x256 + y256)

(x128 + y128)(x64 + y64)(x16 + y16)(x8 + y8).

But consider all of the terms in the expansion of the right-hand side. They are all
distinct, because binary expansions are unique (and thus so are the exponents of x).
There are clearly 27 terms in this specific case, and 2h terms in general.

Second proof. By Lucas’s theorem, if n = nk2
k + nk−12

k−1 + · · · + n0 and i =
ik2

k + ik−12
k−1 + · · · + i0 are the binary expansions of n and i respectively,

(

n

i

)

≡
(

nk

ik

)

· · ·
(

n0

i0

)

(mod 2).

(Note that Lucas’s theorem may itself be proven using the characteristic 2 method of
the previous proof. We include this solution because some people are familiar with
Lucas’s theorem directly, particularly for Olympiad-level number theory.) Thus, if we
want the right-hand side to be 1 mod 2, none of the binomial coefficients

(

nj

ij

)

can

be 0. This means that if nj = 0, ij = 0 as well, while if nj = 1, ij can be either 0 or
1, and similarly for the other bits (binary digits). This means that if there are h 1s
in the binary representation of n, there will be 2h odd binomial coefficients.

Third proof. By writing out Pascal’s triangle modulo 2 (that is, marking all of the
odd coefficients with 1s), we obtain

1
1 1

1 0 1
1 1 1 1

1 0 0 0 1
1 1 0 0 1 1

1 0 1 0 1 0 1
1 1 1 1 1 1 1 1



If we look carefully, we see that this is Sierpinski’s triangle! Thus, we can construct
the triangle by beginning with a single 1; then, at each step, we make two copies of
what we have so far and place them below our current triangle, filling in the rest with
zeroes. For example, the first few steps are

1

7→
1

1 1 7→
1

1 1
1 0 1

1 1 1 1

followed by the triangle above. It’s clear from this construction that the number of
1s in each row is a power of 2. We begin with a single row with one 1, and every step
of the process creates new rows that either have the same number of 1s as an existing
row or exactly twice as many as before.

Authors. Written by Boris Alexeev with assistance from Valery Alexeev, Mo
Hendon, and Ted Shifrin.

Sources. Almost all of these problems are directly inspired by Steve Sigur’s
emails and other writings, which were often themselves inspired by ARML or AIME
problems. Problem 7 is from “Mathematical Miniatures” by Svetoslav Savchev and
Titu Andreescu.


