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Written test, 25 problems / 90 minutes
October 17, 2009

WITH SOLUTIONS

No calculators are allowed on this test. 10 points for a correct answer, 0
points for an incorrect answer, and 2 points for an answer left blank.

1 Easy Problems

Problem 1. John has a bunch of shoes in his closet, but only 2/3 of the left shoes
have matching right shoes, and only 3/5 of the right shoes have matching left shoes.
What fraction of the shoes are parts of matching pairs? (No shoe is part of two pairs.)

(A)♥ 12/19 (B) 19/30 (C) 21/30 (D) 12/15 (E) None of the above

Solution. Let us say there are N pairs, so that there are N left and N right shoes
matched. 2/3 of all left shoes are matched, so there are (3/2)N left shoes. 3/5 of
all right shoes are matched, so there are (5/3)N right shoes. Altogether, there are
(3/2)N + (5/3)N = (19/6)N shoes, and of these 2N are matched. So the portion is

2N

(19/6)N
=

12

19

Problem 2. A curious tourist wants to go for a walk on the streets of the Old Town
from his hotel (the point A on the map below) to the train station (the point B) using
the longest way possible but never passing through the same point twice. (He can
only move on the grid.)



b
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If we consider any interval of length 1 to be a street, how many streets can the tourist
traverse?

(A) 33 (B)♥ 34 (C) 35 (D) 36 (E) None of the above

Solution. One possible solution with 34 streets is shown on the picture below. Let
us show that a larger number is impossible.

b

b
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B

Altogether in the old town there are 36 intersections. Every time the tourist passes a
street, he comes to a new intersection. Therefore, he can not go through more than
35 streets. Let us show that he can not go through 35 streets either. For this, let us
color the intersections in white and black in the chess order (see the picture below).
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Every time he traverses a street, the tourist comes to an intersection of the opposite
color. The hotel and the train station have the same color. Therefore, any route will
have an even number of streets.



Problem 3. Every morning Joe walks for 1 mile along the tram tracks and counts
the trams passing him from behind and coming towards him. During the year, he
counted 100 of the former and 300 of the latter. Joe’s speed is 3 mph. What is the
tram’s speed, in mph?

(A) 5 (B) 7 (C) 9 (D) 10 (E)♥ None of the above

Solution. Let v be the tram’s speed. The numbers 100 and 300 are proportional to
the speeds of the trams relative to Joe. Therefore,

v + 3

v − 3
=

300

100
=

3

1

and v = 6.

Problem 4. If a child is born in 2009, what will be the next year that both her age
and the year are perfect squares?

(A) In 4 or 9 years (B)♥ In 16 or 25 years (C) In 36 or 49 years (D) A
different answer (E) Never

Solution. The next perfect square larger than 2009 is 2025 = 452. Luckily, this
works: 2025 = 2009 + 16.

Problem 5. Consider the number

15! = 1 · 2 · 3 · · ·14 · 15

Add its digits to obtain a new number. Add its digits to obtain a new number, and
continue this process until you get a single digit. What is it?

(A) 0 or 1 (B) 2 or 3 (C) 4 or 5 (D) 6 or 7 (E)♥ 8 or 9

Solution. An integer and the sum of its digits have the same remainder modulo 9
because 10k = 1 (mod 9) for any k. Now, 15! is divisible by 9, so in the end we will
get either 0 or 9. We can not get 0 if we don’t start with 0. So the answer is 9.

Problem 6. Two positive real numbers have an average of 10. Which of the following
must be true about µ, the average of their reciprocals?

(A) µ = 10 (B) µ = 1/10 (C) µ can be any real number (D)♥ µ ≥ 1

10

(E) µ ≤ 1

10

Solution. If the numbers are x and y, then

µ =

1
x

+ 1
y

2
=

x+y
2

xy
=

10

xy
.



Since the largest the product can be is 100, obtained when x = y = 10 (because

xy =
(

x+y
2

)2 −
(

x−y
2

)2 ≤
(

x+y
2

)2
= 102), we see that µ ≥ 10

100
=

1

10
.

This problem demonstrates the arithmetic mean-harmonic mean inequality, that
x+y

2
≥ 2

1

x
+ 1

y

. This may be generalized: for any positive real numbers, a1, a2, . . . , an,

max(a1, a2, . . . , an) ≥
√

a2
1 + a2

2 + · · ·+ a2
n

n
≥ a1 + a2 + · · ·+ an

n

≥ n
√

a1a2 · · ·an ≥ n
1

a1

+ 1

a2

+ · · · + 1

an

≥ min(a1, a2, . . . , an).

Furthermore, each equality holds if and only if the ai are equal, that is a1 = a2 =
· · · = an. At first, it may seem that these inequalities are difficult to remember, but
they are special cases of the generalized mean:

m(t) ≡
(

1

n

n
∑

k=1

at
k

)1/t

.

Then, the quadratic mean (root mean square), arithmetic mean, and harmonic
mean are obviously m(2), m(1), and m(−1) respectively. Less obviously, the maxi-
mum max(a1, a2, . . . , an) is actually m(∞) = limt→∞ m(t) and min(a1, a2, . . . , an) is
m(−∞). But most interestingly, the geometric mean, which does not particularly
resemble a mean of the form m(t) is actually m(0) = limt→0 m(t).

In terms of the m(t), the long chain of inequalities above can be rewritten more
simply as

m(∞) ≥ m(2) ≥ m(1) ≥ m(0) ≥ m(−1) ≥ m(−∞).

This is interesting because ∞ > 2 > 1 > 0 > −1 > −∞. In fact, this is an
excellent way to remember the long chain of inequalities, and it all works because of
the generalized mean inequality: If k > l, then m(k) ≥ m(l) with equality if and only
if the ai are equal. Here we see that it makes sense for max = m(∞), min = m(−∞),
and the geometric mean to be m(0). After all, what other particularly nice number
falls between −1 and 1?

Problem 7. There is a peculiar species of worm which can either climb up 7 feet at
once, or climb down 5 feet at once, but no more or less at any given step. What is
the shortest pole that he can both climb up and climb down?

(A) 10 (B)♥ 11 (C) 12 (D) 13 (E) more

Solution. First solution. It is possible for the worm to climb and descend an 11-foot
high pole: 0 ↗ 7 ↘ 2 ↗ 9 ↘ 4 ↗ 11 ↘ 6 ↘ 1 ↗ 8 ↘ 3 ↗ 10 ↘ 5 ↘ 0. If the pole
were any shorter, then the worm would be stuck at or before 0 ↗ 7 ↘ 2 ↗ 9 ↘ 4.



Second solution. In general, assume the worm can climb up x or down y at a time.
The shortest pole that the worm can climb up and down is x+y−gcd(x, y). To prove
this, note that by dividing through by gcd(x, y), we need only consider the case when
x and y are relatively prime; moreover, we may assume x > y by symmetry.

To see that the worm cannot climb up and down a shorter pole, consider the
worm’s height modulo y. The worm starts at height 0 and ends at height 0 if we are
to consider a single trip all the way up and then down the pole. The height modulo
y either doesn’t change (if he goes down y) or goes up by x. Because x and y are
relatively prime, this means all residues modulo y must be hit. However, on pole
shorter than x + y − 1, the worm cannot reach height x − 1 mod y, and so cannot
hit one of the desired residue classes.

On the other hand, he can easily climb up and down a pole of height x + y − 1.
Indeed, suppose he starts at the top of the pole. By the discussion above, he can
hit every residue class modulo y (if he always takes as many down moves as possible
before an up move, he can never get stuck), and so in particular can hit 0 mod y;
from there, a few steps down gets him down. Flipping the argument, he can hit every
residue class modulo x, so in particular he can hit 0 mod x; from there, a few steps
up gets him up.

Problem 8. Let n be the greatest number that is the product of some positive
integers (possibly not distinct), such that the sum of these integers is 2009. Find the
last digit of n.

(A) 0 or 1 (B) 2 or 3 (C) 4 or 5 (D)♥ 6 or 7 (E) 8 or 9

Solution. Consider the positive integers in the product. It is not optimal to have
any 1s, because replacing 1 and k by k + 1 increases the product. Similarly, numbers
greater than 4 are not optimal because k > 4 may be replaced by 2 and k − 2; even
4 may be replaced by two 2s without changing the product. Thus we may assume
there are only 2s and 3s. However, 32 > 23 so there should be at most two 2s. Thus,
the optimal product is n = 2 · 3669. The last digit of 3k is 3 when k is one more than
a multiple of four. Thus the last digit of n is 6.

Problem 9. A group of hikers went on a 3.5-hour hike. In any consecutive one-hour
period during their hike, they covered exactly two miles. What is the most distance
they could have covered (in miles)?

(A) 6.5 (B) 7 (C) 7.5 (D)♥ 8 (E) None of the above

Solution. They covered at most 8 miles because they covered at most 2 miles in each
of the time periods [0, 1], [1, 2], [2, 3], and [2.5, 3.5], but that even double-counted the
progress in [2.5, 3].

It is, however, possible to cover 8 miles in the following manner: the hikers covered
two miles at uniform speed in each of the intervals [0, 0.5], [1, 1.5], [2, 2.5], [3, 3.5] but



rested and made no progress during each of the intervals [0.5, 1], [1.5, 2], and [2.5, 3].

2 Medium Problems

Problem 10. If a star is born in 2009, how many times will it happen that both its
age and the year are perfect squares?

(A) 1 (B) 2 (C)♥ 3 (D) 4 (E) more

Solution. We need to solve the equation

2009 + a2 = b2, i.e. 2009 = a2 − b2 = (a − b)(a + b)

For every way to factor 2009 as n · m = (a − b)(a + b) with n < m, there will be
a = (n + m)/2 and b = (m− n)/2. (Note here that both n and m are odd, so n ± m
will be divisible by 2.)

So the answer is half the number of divisors of 2009 (because we only consider
divisors n with n < m = 2009/n.) Factor

2009 = 2025 − 16 = 452 − 42 = 41 · 49 = 41 · 72

Every divisor has the form 41a · 7b with a = 0, 1 and b = 0, 1, 2. So the number of all
divisors is 2 · 3 = 6, and half of that is 3.

The ages will be: 16, 1,960, and 1,008,016. So this must literally be a star, not a
human!

Problem 11. Eight square tissues of the same size were placed on the table, one
by one, to form the picture shown below. In the order of placement, which was the
tissue marked B?

A

B
C D

E
FG

H

(A) the second (B) the third (C) the fourth (D)♥ the fifth (E) the
sixth

Solution. By examining local parts of the picture, we can see that A was placed
last and D placed second to last. We may also conclude that C was placed after



B but before D. Similarly F was placed after E but before G. Finally H was placed
after G but before B. Following this chain of conclusions, the following is the order
of placement:

E F G H B C D A

So tissue B was fifth.

Problem 12. How many two-digit numbers A have the property that the square of
the sum of the digits of A equals the sum of the digits of A2?

(A) 6 (B) 7 (C) 8 (D)♥ 9 (E) None of the above

Solution. First solution. Note that A2 < 992 = 9801 < 9999. Therefore, the sum of
digits of A2 is less than 9 · 4 = 36. Since it equals the square of the digits of A, the
sum of digits of A is less than

√
36 = 6, i.e., is less than or equal to 5. There are now

15 numbers to check: 10, 11, 12, 13, 14, 20, 21, 22, 23, 30, 31, 32, 40, 41, 50, from
which 9 numbers work: 10, 11, 12, 13, 20, 21, 22, 30, 31.

Second solution. Denote by S(n) the sum of the digits of n. Note that when
adding two numbers, either the digits add up or there is a carry of 1 on the left,
and every time this happens the sum of digits drops by 9. Thus, S(n) ≤ n since
n = 1 + · · ·+ 1, and equality holds if and only if n is a one-digit number. Also, note
that S(10n) = S(n).

Let the two-digit number be A = 10a + b. Then

S(A2) = S((10a + b)2) = S(100a2 + 10 · 2ab + b2) ≤ S(100a2) + S(10 · 2ab) + S(b2)

= S(a2) + S(2ab) + S(b2) ≤ a2 + 2ab + b2 = (a + b)2 = S(A)2

and equality holds if and only if a2, 2ab, and b2 are 1-digit numbers. Thus, it is
necessary and sufficient that 1 ≤ a ≤ 3, 0 ≤ b ≤ 3 and ab ≤ 4. This gives the 9
possibilities 10, 11, 12, 13, 20, 21, 22, 30, 31.

Problem 13. What is the slope of the line that bisects the angle in the first quadrant
formed by the lines y = 0 and y = 2x?

(A)

√
5 + 1

2
(B) 1 (C)♥

√
5 − 1

2
(D)

1

2
(E)

1

3

Solution. If θ is the angle formed by the two lines, then tan θ = 2. Letting φ = θ/2,

we have
2 tanφ

1 − tan2 φ
= 2, and so tan2 φ + tan φ − 1 = 0. Thus, tanφ =

−1 ±
√

5

2
.

We discard the negative solution, which is the slope of the perpendicular to the angle
bisector.

Problem 14. How many positive integers n less than 2009 have the property that
mn is not divisible by 2009 for every positive integer m < 2009?



(A) 1674 (B)♥ 1680 (C) 1722 (D) 1960 (E) None of the above

Solution. Acceptable integers n must be relatively prime to 2009. Since 2009 =

72 · 41, we see that n cannot be divisible by 7 or by 41. There are 2009 · 6

7
· 40

41
=

7 · 6 · 40 = 1680 eligible values of n.
In general, the number of positive integers less than or equal to n which are

relatively prime to n is called Euler’s totient function of n, written ϕ(n). It is of
particular interest in number theory and has many nice properties. For example,
ϕ(p) = p − 1 for prime p and ϕ(mn) = ϕ(m)ϕ(n) if m and n are relatively prime.
The formula used above is a special case of the identity

ϕ(n) = n ·
∏

p|n
p prime

p − 1

p
.

Problem 15. What is the distance between a vertex and the center of a regular
tetrahedron of side one?

(A) 2
√

6

9
(B)♥

√
6

4
(C) 3

√
3

8
(D)

√
6

3
(E) None of the above

Solution. First solution. Let A and B be vertices, X the center, and H the center of
the face opposite A. The distance from the center to a vertex, AX, is three-fourths
of the height of the tetrahedron, AH . (This is analogous to the statement that for
an equilateral triangle, the distance from a vertex to the center is two-thirds of the
height.) To find the height, we use the Pythagorean theorem AB2 = AH2 + HB2.
Since AB = 1, we now need to find HB, which is the aforementioned distance from
a vertex to the center of an equilateral triangle.

The height of an equilateral triangle of side 1 is
√

3

2
, so HB = 2

3

√
3

2
=

√
3

3
, so

AH =
√

1 − 1
3

=
√

2
3
. Finally, three-fourths of this is AX = 3

4
·
√

2√
3

=
√

6
4

.

Second solution. Consider a tetrahedron of side 4
√

2 embedded in 4-dimensional
space so that its vertices are (4, 0, 0, 0), (0, 4, 0, 0), (0, 0, 4, 0), and (0, 0, 0, 4). (The
tetrahedron lies in the hyperplane x + y + z + w = 4.) The center of this tetrahedron
is clearly (1, 1, 1, 1) and so the distance to a vertex is

√
32 + 12 + 12 + 12 = 2

√
3. We

scale down our answer for a unit tetrahedron to get 2
√

3

4
√

2
=

√
6

4
.

Problem 16. What is the sum of the distances from the point (1, 1) to the sides of
the equilateral triangle with vertices at (0, 0), (4, 0), and (2, 2

√
3)?

(A) 2 (B) 3(2
√

3 − 1) (C)♥ 2
√

3 (D) 4 (E) 4
√

3

Solution. The sum S doesn’t depend on the point in the interior. Indeed, let h1, h2,
and h3 be the three distances, and split up the equilateral triangle into three triangles
with base 1 and heights h1, h2, and h3. Then by the 1

2
bh formula for the area of a



triangle, the area of the whole equilateral triangle 4
√

3 is equal to 2h1 + 2h2 + 2h3,
and so in particular h1 + h2 + h3 = 4

√
3

2
= 2

√
3.

Problem 17. If the side lengths of a right triangle are all integers and one is 2009,
find their largest possible sum.

(A) 4410 (B) 16072 (C)♥ 4038090 (D) 4040099 (E) there is none.

Solution. To get the largest sum, we want the given length to be one of the legs,
not the hypotenuse. If one leg has length A (in our case an integer), then we want
to maximize x + y, where x and y are integers satisfying A2 + x2 = y2. Since
A2 = y2 − x2 = (y− x)(x + y), to maximize x + y we want to set y − x = 1 and write
A2 = 2x + 1, and then the sum of the side lengths will be A + 2x + 1 = A2 + A =
A(A + 1) = (2009)(2010) = 4, 038, 090.

Problem 18. 2009 kittens are sleeping in their individual crates, numbered 1 through
2009. A veterinary assistant decides to open all 2009 doors in order while the cats are
asleep. He then goes back to the beginning and closes all the even-numbered doors.
He then goes back to the beginning and changes every door divisible by three (i.e., if
it’s open, he closes it, and if it’s closed, he opens it). He then continues this process
for every integer k ≤ 2009, so that on the last trip, he changes precisely the 2009th

door. When the kittens awake in the morning, what is the largest numbered crate
whose kitten will roam free?

(A) 1 (B) 1024 (C)♥ 1936 (D) 2009 (E) None of the above

Solution. The position of a door changes once for each distinct factor of its assigned
number. Since a door is opened with factor 1, it will end up open precisely when there
are an odd number of distinct factors. The positive integers with an odd number of
distinct factors are the perfect squares. The largest perfect square less than 2009 is
442 = 1936.

Problem 19. Rachelle has 100 letters addressed to 100 different people and must
place them in corresponding envelopes. Out of boredom, she puts one letter at random
in each envelope. What is the expected number of letters that end up in correct
envelopes?

(A) 0 (B) 1/e (C)♥ 1 (D) 2 (E) 3

Solution. First solution: Let Xi be the random variable that is 1 when the ith letter
is put in the correct envelope and 0 otherwise. Clearly the expected value of Xi is
E(Xi) = 1/100. Since E(X + Y ) = E(X) + E(Y ) for any random variables X and
Y , we have

E(X1 + X2 + · · · + X100) = 100 · 1

100
= 1 ,



but X1 + · · · + X100 gives precisely the number of letters in the correct envelopes.

Second solution: We give an inductive proof that the answer is always 1. Clearly,
with n = 1 letters, the answer is 1. Suppose we know that the expected number of
correct letters is 1 for all n ≤ k. With k + 1 letters, let Y be the event that letter
k + 1 is placed in the correct envelope; P (Y ) = 1/(k + 1). Let X be the number of
letters in the correct envelopes. Then

E(X) = E(X | Y )P (Y ) + E(X | not Y )P (not Y ) .

By the induction hypothesis, E(X | Y ) = 1 + 1 = 2.
On the other hand, if letter k +1 is put in the wrong envelope, say the `th, letters

1 through k must be put in envelopes 1 through k, with k+1 replacing `. Since letter
` cannot possible end up in the correct envelope, E(X | not Y ) = 1 − 1/k.

Thus,

E(X) = 2 · 1

k + 1
+

(

1 − 1

k

)(

1 − 1

k + 1

)

=
2

k + 1
+

k − 1

k
· k

k + 1
= 1 .

Problem 20. What is the product of the lengths of all the diagonals of a regular
octagon with sidelength 1? (A diagonal is a line segment connecting two vertices that
are not adjacent.)

(A)
(2 +

√
2)10

1024
(B) 256(2 +

√
2)4 (C)♥

(2 +
√

2)14

4
(D)

(2 +
√

2)28

16
(E) None of the above

Solution. First, consider a regular octagon inscribed in the unit circle, and consider

the 5 diagonals emanating from a fixed vertex. They have length
√

2,
√

2 +
√

2, 2,
√

2 +
√

2, and
√

2, respectively (using the law of cosines for the non-obvious one).
Thus, the product of the lengths of the diagonals emanating from a fixed vertex is
4(2 +

√
2). Since each diagonal connects two vertices, the product of the lengths of

all the diagonals will therefore be
(

4(2 +
√

2)
)8/2

=
(

4(2 +
√

2)
)4

.

Note that the sidelength of the octagon inscribed in the unit circle is 2 sin(π/8).
So to obtain an octagon with sidelength 1 we must scale everything up by a factor

of
1

2 sin(π/8)
. Since there are 20 diagonals, the product of the lengths will therefore

scale up by a factor of

(

1

2 sin(π/8)

)20

=

(

1

4 sin2(π/8)

)10

. Recall that 4 sin2(π/8) =

2
(

1 − cos(π/4)
)

= 2 −
√

2, so
1

4 sin2(π/8)
=

2 +
√

2

2
.

Thus, the product of the lengths of all the diagonals of the regular octagon with
sidelength 1 is

(

4(2 +
√

2)
)4

(

2 +
√

2

2

)10

=
(2 +

√
2)14

4
.



3 Hard Problems

Problem 21. What is the least number n so that a 30◦–30◦–120◦ triangle can be cut
into n acute triangles?

(A) 8 (B) 9 (C) 10 (D) 11 (E)♥ None of the above

Solution. Here is a dissection with seven triangles:
A

B C

V

D

E

F

G

It is not possible to cut a nonacute triangle into less than seven acute triangles.
Indeed, consider a minimal dissection, say of a triangle ABC with nonacute angle A.
One line segment must divide angle A; however, it cannot meet the other side since
otherwise another nonacute triangle would be formed and our dissection would not be
minimal. Therefore a vertex of the dissection lies within the triangle, say V . At least
five line segments must meet at V , forming a centrally-divided pentagon. It follows
there are least seven triangles because any dissection of a triangle into triangles and
a single pentagon must contain at least two triangles.

Conversely, every nonacute triangle can be dissected into seven acute triangles.
Indeed, draw the incircle and choose two tangents DE and FG to it so that BDE
and CFG are acute triangles. Then the angle bisectors of the pentagon ADEFG
complete the dissection, because a triangle with two acute angles greater than 45◦ is
acute.

Problem 22. What is the largest number of knights that may be placed on a toroidal
5 × 5 chessboard so that no knight attacks another? A toroidal chessboard is one in
which the left and right edges have been identified, as well as the top and bottom
edges. Thus a piece can move off the left end of the board and end up at the same
height on the right end, and similarly with top and bottom.

(Recall that in chess, a knight can move two squares horizontally and one square
vertically, or two squares vertically and one square horizontally. The knight, however,
does not attack the squares along the way to its destination; thus a single knight
attacks 8 squares.)

In the following picture, the knight is denoted by N and it attacks the eight
numbered squares.



N

1

23

4

5

6 7

8

(A) 4 (B)♥ 5 (C) 6 (D) 7 (E) None of the above

Solution. It is easy to achieve five non-attacking knights, for example by placing
them all in the same row. To prove that you cannot place more, consider the following
pattern on the board:

A

B

C

D

E

C

D

E

A

B

E

A

B

C

D

B

C

D

E

A

D

E

A

B

C

Each letter marks five squares, all of which attack each other. Thus you may place
at most one knight within each group of identical letters.

Problem 23. What is the 57th digit in the decimal expansion of 1/23?

(A) 0 or 9 (B) 1 or 8 (C) 2 or 7 (D) 3 or 6 (E)♥ 4 or 5

Solution. The decimal expansion of 1/23 is a repeating decimal with period a divisor
of 22, i.e., 2, 11, or 22. Since long division shows that the decimal starts with 0.043 . . . ,
the period is not 2. If the period is 11, then the 57th digit will be the 2nd digit, 4. If
the period is 22, the 57th digit will be equal to the 13th digit. By Midy’s Theorem,
the sum of the 2nd and 13th digits is 9, so the 13th digit will be 5. So the 57th digit is
either 4 or 5. In fact, it is 5, since the period of the decimal is 22.

For reference, recall that Midy’s theorem says that if a fraction a/p (p prime) has
period 2n and so may be written as

a

p
= 0.d1d2d3 · · · dndn+1 · · ·d2n,

then di + di+n = 9.



Problem 24. In order to win a (tennis-like) game, one must win 3 points and also
win by a margin of 2 points. (Thus, possible winning scores are 3-0, 3-1, 4-2, 5-3,
etc.) If Boris wins each point with probability p = 2/3, what is the probability that
he wins the game?

(A) 176/405 (B) 304/405 (C)♥ 112/135 (D) 132/135 (E) None of
the above

Solution. First solution: The probability that Boris wins by a score of 3-0 or 3-1 is
p3 + 3p3(1 − p) (there are three paths to 3-1 from 0-0 that don’t pass through 3-0).
Now the probability that he wins after getting to 2-2 is

(

4

2

)

p2(1 − p)2
(

p2 + 2p(1 − p)p2 + 4p2(1 − p)2p2 + . . .
)

= 6p4(1 − p)2 1

1 − 2p(1 − p)
.

Thus, the probability that Boris wins is

p3 + 3p3(1 − p) +
6p4(1 − p)2

1 − 2p(1 − p)
,

which equals 112/135 ≈ 83% when p = 2/3.
Second Solution: We avoid the infinite series in the previous argument by noticing

that once the score gets to 2-2, we can focus on pairs of points played after that
moment. We don’t care about pairs where each players wins a point, so we’re waiting
for a pair when either player wins both points. The probability that Boris wins in
that situation is

p2

p2 + (1 − p)2
,

as before.
Now we imagine a slightly different game: We play 4 points, regardless, but if the

score is 2-2 we continue until someone wins as usual. We let the reader sort out why
the probabilities are the same for this game. Then the probability that Boris wins
will be (considering that his opponent wins 0, 1, or 2 points of the first four points
played)

(

4

0

)

p4+

(

4

1

)

p3(1−p)+

(

4

2

)

p2(1−p)2 p2

1 − 2p(1 − p)
= p4+4p3(1−p)+

6p4(1 − p)2

p2 + (1 − p)2
.

This approach may be generalized to games of the form “first to k wins, except
one must win by 2” for any k.

Problem 25. A set S of (distinct) positive integers has the property that the sum of
any three of them is a prime number. What is the largest possible number of elements
S can have?



(A) 3 (B)♥ 4 (C) 5 (D) 6 (E) None of the above

Solution. One example of four numbers satisfying the conditions is 1, 3, 7, 9. Indeed,
1+3+7 = 11, 1+3+9 = 13, 1+7+9 = 17 and 3+7+9 = 19 are all prime numbers.

Let us show that five (or more) such numbers do not exist. Consider the remain-
ders obtained by dividing the five numbers by 3. If there are three numbers with
the same remainder then their sum is divisible by 3. If three numbers with the same
remainder do not exist then there are numbers with every remainder 0, 1, and 2.
Then their sum is divisible by 3. On the other hand, this sum is larger than 3 since
the numbers are positive and distinct. So the sum is not a prime number.

Authors. Written by Boris and Valery Alexeev (4,5,7,9,10,15,22 originals)+
(1,2,3,8,11,12,21,25 borrowed), and by Alex Rice, Mo Hendon and Ted Shifrin (6,13,
14,16,17,18,19,20,23,24).

Sources. Problem 11 was borrowed from the online olympiad “Socrates” http:

//www.math-on-line.com/olympiada-math/. Problems 1, 12 and 3 are from the
Moscow Mathematical Olympiad at http://olympiads.mccme.ru/mmo/index.htm.
Problem 2 is from the Moscow Mathematical Festival at http://olympiads.mccme.
ru/matprazdnik/. Problem 25 is from the Russian olympiad http://olympiads.

mccme.ru/mmo/okrug/okr08n.htm. Problem 21 was proposed by Martin Gardner in
his column “Mathematical Games” in Scientific American. Problem 8 is from the
1976 International Mathematical Olympiad.


