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WITH SOLUTIONS

1 Easy Problems

Problem 1. Find
∏2013

n=2

(
1− 1

n

)
. The notation “

∏k
n=1 an” means a1 · a2 · a3 · · · ak.

(A) 1− 1
2014

(B)♥ 1
2013

(C) 1 + 1
2013

(D) 1
2013!

(E) 1− 1
2013!

Solution.
∏2013

n=2

(
1− 1

n

)
=
(
1− 1

2

) (
1− 1

3

)
· · ·
(
1− 1

2013

)
= 1

2
· 2
3
· 3
4
· · · 2012

2013
= 1

2013
.

Problem 2. If a triangle with a 30◦ angle is inscribed in a circle of radius 1, how
long is the side opposite the 30◦ angle?

(A)♥ 1 (B)
√
2
2

(C)
√
3
2

(D)
√

3 (E) it depends on the other angles in
the triangle

Solution. The interesting thing here is that it doesn’t matter what the other angles
of the triangle are, so we may as well assume that it’s a 30◦−60◦−90◦ right triangle.
Then the hypotenuse is a diameter, and thus length 2, and so opposite side length =
2 sin(30◦) = 1.

Why does it not matter what the other angles are? This follows from the familiar
fact that the angle subtended by an arc from a point on a circle is half the angle
subtended by the same arc from the center.

Alternatively, recall the law of sines says

A1

sin(α1)
=

A2

sin(α2)
=

A3

sin(α3)
,

if Ai is the side opposite angle αi, i = 1, 2, 3. This common ratio
is the diameter of the circumscribed circle, so again

2 =
A1

sin(30◦)
⇒ A1 = 1.



Problem 3. If you travel a certain distance at a rate of R1 miles/hr, and the same
distance again at a rate of R2 miles/hr, what is your average rate in miles per hour
for the whole trip?

(A) R1+R2

2
(B) 1

2

(
1
R1

+ 1
R2

)
(C) 1

2
1

1
R1

+ 1
R2

(D)♥ 2
1

R1
+ 1

R2

(E) None of

the above

Solution. Your time traveling the initial distance d is t1 = d
R1

, and the time for the

second distance (also d) is t2 = d
R2

. So the combined rate is 2d
t1+t2

= 2d
d
R1

+ d
R2

= 2
1

R1
+ 1

R2

.

Problem 4. What is the smallest positive integer n so that the leftmost digit of
(11)n is not 1?

(A) 7 (B)♥ 8 (C) 9 (D) 10 (E) there is no such integer

Solution. If you just start computing powers of 11, you may notice Pascal’s triangle
arising: 112 = 121, 113 = 1331, 114 = 14641. Of course this fails for 105, because we
need to account for the carries:

115 = 1× 105 + 5 · 104 + 10× 103 + 10× 102 + 5× 101 + 1

= 1× 105 + 6× 104 + 1× 103 + 0× 102 + 5× 101 + 1 = 161051.

Compare with the 5th row of Pascal’s triangle, and you’ll see how the carries work:

1 5x10x10 5 1.

This makes it clear that 1110 does not begin with a 1, since the 10th row of Pascal’s
triangle begins 1 10 45 . . . , and so 1110 will begin with a 2. What about smaller
exponents? Look at the left part of Pascal’s triangle:

1 5 10 . . .
1 6 15 20. . .

1 7 21 35 . . .
1 8 28 56 . . .

So 117 = 194 . . . and 118 = 21 . . . .
Why does 11n show up in Pascal’s triangle? Write 11n as (10 + 1)n and apply the

binomial theorem.

Problem 5. In the diagram shown at right, 4 circular arcs pass
through the corners of a 1 by 1 square. Each of the arcs is tangent
to the diagonals of the square. What is the area of the shaded
region?



(A) 1− π
4

(B) 1 +
√

3− 2π
3

(C)♥ 2− π
2

(D) 4− π (E) π
2
− 1

Solution. See the diagram:

The larger square has edge length
√

2, so its area is 2.
The unshaded part now consists of 4 quarter circles of
radius

√
2
2

, so its area is π
2
. So the shaded area is 2− π

2
.

Problem 6. What is the smallest natural number r so that no number of the form
n! ends in exactly r zeroes?

(A) 4 (B)♥ 5 (C) 6 (D) 10 (E) 25

Solution. The number of zeroes at the end of n! equals the number of factors of 5.
So 5! has 1 zero, 10! has 2 zeros, 15! has 3, 20! has 4 but 25! has 6. Therefore no n!
ends in 5 zeroes.

Problem 7. If tan(x)+tan(y) = 2013 and tan(x+y) = 2014, what is cot(x)+cot(y)?

(A) 1
2013

(B) 2013
2014

(C)♥ 2013 · 2014 (D) 2013 (E) 2014

Solution. tan(x + y) = 2014 ⇒ tan(x)+tan(y)
1−tan(x) tan(y) = 2014 ⇒ 2013

2014
= 1 − tan(x) tan(y) ⇒

tan(x) tan(y) = 1
2014

. Thus,

cot(x) + cot(y) =
1

tan(x)
+

1

tan(y)
=

tan(x) + tan(y)

tan(x) tan(y)
=

2013

1/2014
= 2013 · 2014.

Problem 8. In “refraction geometry”, the slope of a “line” is
halved as the line crosses the y-axis. Where does the “refrac-
tion line” from (−2, 0) to (3, 4) cross the y-axis?

(A) 1 (B) 8/5 (C) 2 (D)♥ 16/7 (E) 3



Solution. Lines in this geometry are of the form

y =

{
mx+ b if x ≤ 0,
1
2
mx+ b if x > 0

Substituting (−2, 0) and (3, 4) for (x, y) gives

0 = −2m+ b,

4 =
3

2
m+ b.

Solving, we get m = 8
7

and b = 16
7

.
We call this “refraction geometry” because it mimics (not exactly – see Snell’s

law) how light bends when it passes from one medium to another.

Problem 9. Suppose that n is the largest integer for which 3n divides the number

1234567891011121314 . . . 2013

obtained by concatenating the decimal digits of the positive integers 1, 2, 3, . . . , 2013.
Find n.

(A) 0 (B)♥ 1 (C) 2 (D) 3 (E) None of the above

Solution. We recall that every positive integer is congruent to its sum of digits
modulo 9. Applying this fact twice, we see that

1234567891011121314 . . . 2013 ≡ 1 + 2 + 3 + · · ·+ 2 + 0 + 1 + 3 (mod 9)

≡ 1 + 2 + 3 + · · ·+ 2013 (mod 9).

(The right-hand summands on the first line are the individual digits of the numbers
1, 2, . . . , 2013, and those on the second line are the numbers 1, 2, . . . , 2013 themselves.)
Since

1 + 2 + 3 + · · ·+ 2013 =
2013 · 2014

2
= 2013 · 1007 ≡ 6 · 8 ≡ 3 (mod 9),

we see that 3 divides our number but that 9 does not. So the answer is n = 1.
The real number 0.123456789101112 . . . is known as Champernowne’s constant.

That constant is known to be irrational (in fact transcendental) and is also normal:
every finite string of decimal digits of a given length shows up in the decimal expansion
with the same frequency as every other string of the same length. In fact, this
constant was the first explicit real number to be proved normal. This was done by
D. Champernowne, an English economist and mathematician, while he was still an
undergraduate.



Problem 10. A square of side length 1 is topped with an equilateral
triangle, then inscribed in a circle as shown. What is the radius of
the circle?

(A)♥ 1 (B) 1
2

+
√
3
4

(C) 3
2

(D) 2 +
√

3 (E) 2

Solution. Slide the triangle to the bottom of the square. Notice that the top point
of the triangle has moved down 1 unit, and is 1 unit from the bottom corners of the
square.

2 Medium Problems

Problem 11. How many positive integers n are there for which bn2

5
c is a prime

number? Here the notation bxc means the largest integer not exceeding x.

(A) 2 (B)♥ 3 (C) 4 (D) 5 (E) infinitely many

Solution. We consider 5 cases:

• n = 5k. Then bn2/5c = 5k2, which is prime only if k = 1.

• n = 5k + 1. Then b(5k + 1)2/5c = 5k2 + 2k = (5k + 2)k. This is prime only if
k = 1.

• n = 5k + 2. Then b(5k + 2)2/5c = 5k2 + 4k = (5k + 4)k, which is never prime.

• n = 5k+ 3. Then b(5k+ 3)2/5c = 5k2 + 6k+ 1 = (5k+ 1)(k+ 1), which is never
prime.

• n = 5k + 4. Then b(5k + 4)2/5c = 5k2 + 8k + 3 = (5k + 3)(k + 1), which is
prime only if k = 0.

So the only primes are when n = 5, 6, and 4.

Problem 12. Let θ1, θ2, θ3, θ4 be the four complex roots of the polynomial

P (x) = 20x4 + 13x3 + 11x+ 16.

Find the numerical value of

(1 + θ1)(1 + θ2)(1 + θ3)(1 + θ4).



(A) 16 (B) −13 (C) 12 (D) 4
5

(E)♥ 3
5

Solution. Notice that 1 + θ1, . . . , 1 + θ4 are the roots of the polynomial Q(x) =
P (x − 1). Q(x) also has leading coefficient 20, so the product of its roots is 1/20 of
the constant term of Q(x), i.e., Q(0)/20. But Q(0) = P (0− 1) = 12, so the product
is 12/20 = 3/5.

Problem 13. The function B(n) satisfies

B(0) = 0, B(2n) = B(n) and B(2n+ 1) = B(n) + 1

for every nonnegative integer n. Find B(2013).

(A) 7 (B) 8 (C)♥ 9 (D) 10 (E) 11

Solution. You can solve this with patience: B(2013) = B(2 · 1006 + 1) = B(1006) +
1 = B(503) + 1 = . . . . Or you can notice that B(n) counts the number of 1’s in the
binary expansion of n. This is true because if the binary expansion of n is ak · · · a0,
then the expansion of 2n is ak . . . a00, and that of 2n+ 1 is ak · · · a01. So we need to
find the binary expansion of 2013, which is 11111011101. So B(2013) = 9.

Problem 14. Consider a triangular array of numbers whose nth row, 1 ≤ n ≤ 100,
consists of the number n repeated n times. What is the average of all of the numbers
in the array?

1
2 2

3 3 3
4 4 4 4

5 5 5 5 5

. .
.

. .
. . . .

. . .

100 · · · 100

(A) 101
2

(B) 20301
6

(C) 5050 (D) 2030100
6

(E)♥ 201
3

Solution. First notice that the sum of the numbers in the nth row is n2, so the sum
of all numbers in the array is

∑100
n=1 n

2 = 100(101)(201)
6

. The number of numbers in the

array is
∑100

n=1 n = 100(101)
2

. So the average is

100 · 101 · 201/6

100 · 101/2
=

201

3
.

We have used two important formulas: 1+2+· · ·+N = N(N+1)
2

and 12+22+· · ·+N2 =
N(N+1)(2N+1)

6
. What if you don’t remember those formulas? You probably remember

the proof of the first one:



1 + 2 + . . . + N = x
+ N + (N − 1) + . . . + 1 = x

N + 1 + . . . N + 1 = 2x.

Here is a similar derivation for the second formula: Begin with the triangular
array from this question, and take advantage of the symmetry; rotate the triangle
(twice) by 120◦:

1
2 2

. .
. . . .

N N N N

N

..
. . . .

2
. . .

1 2 · · · N

N

..
. . . .

. .
.

2
N · · · 2 1

The sum of the corresponding entries in the three triangles is 2N + 1. So if x

is the desired sum, 3x = (2N + 1) ·#entries in a triangle = (2N + 1)
(
N(N+1)

2

)
. So

x = N(N+1)(2N+1)
6

.

Problem 15. What is the length of the shortest path
lying entirely on the surface of a 1 by 1 by 2 rectangular
box, going from one corner to the opposite corner?

P

Q t

(A)
√

6 (B)♥
√

8 (C)
√

10 (D) 2 +
√

2 (E) 4

Solution. Look at a net — a way of cutting the box open and laying it flat, where
we can use the usual tools of geometry. In fact, we’ll look at several nets at once:



Notice that we’ve drawn different copies of the back square of the box — each
with a point Q on it. This shows that the shortest path has length

√
8, and that

there are two shortest paths.

Problem 16. Find the sum of the infinite series

1 +
1

2
+

1

3
+

1

4
+

1

6
+

1

8
+

1

9
+

1

12
+ . . . ,

where the denominators are all of the positive integers which have no prime factors
larger than 3.

(A) 8/3 (B) e (C)♥ 3 (D) π (E) the sum does not converge

Solution. The sum can be re-expressed as

∞∑
i=0

∞∑
j=0

1

2i3j
=

(
∞∑
i=0

1

2i

)(
∞∑
j=0

1

3j

)
=

1

1− 1
2

· 1

1− 1
3

= 2 · 3

2
= 3.

In 1737, Euler used the same idea to rewrite the harmonic series
∑∞

n=1
1
n

as the
product

∏
p

1
1−1/p , where the product is over all primes p. Since the harmonic series

diverges, Euler concluded that the sum of the reciprocals of the primes also diverges.
In particular, there must be infinitely many primes!

Problem 17. Start with a 1 by 1 by 1 cube. Cut a tetrahedron
off of each corner in such a way that the faces of the resulting
polyhedron are all equilateral triangles or regular octagons.
What is the edge length for each of those faces?

(A) 1
2

(B) 1
3

(C) 2−
√
2

2
(D)♥

√
2− 1 (E) None of the above

Solution.



With x and y shown in the diagram, we need y2+y2 =
x2 = (1− 2y)2. So y = 2±

√
2

2
. We discard the solution

which is larger than 1. Then

x = 1− 2y = 1− 2

(
2−
√

2

2

)
=
√

2− 1.

Problem 18. Two urns each contain the same number N > 0 of balls. Each ball
is either red or black, and there are balls of both colors in each urn. From each urn
we randomly choose a ball, note its color, return it to the urn, then choose and note
again. Now suppose that the probability of choosing 2 red balls from the first urn
equals the probability of choosing 2 red balls or 2 black balls from the second urn.
What is the smallest N can be?

(A) 2 (B) 5 (C)♥ 7 (D) 12 (E) it is not possible for those probabilities
to be equal

Solution. Let r and b be the number of red and black balls, respectively, in the first
urn, and let R and B be the corresponding number of balls in the second. Notice
that r+ b = R+B = N . The probability of choosing 2 red balls from the first urn is
(r/N)2, while the probability of drawing 2 red balls or 2 black balls from the second
urn is (R/N)2 + (B/N)2. So we want r2 = R2 +B2. The smallest nontrivial solution
is 52 = 42 + 32, so N = R +B = 7.

Notice that if we choose, with replacement, n ≥ 3 balls, then we’re looking for
solutions to rn = Rn +Bn; Fermat’s last theorem says that there are no solutions for
n ≥ 3. This problem is often referred to as “Molina’s urns”.

Problem 19. Construct a cylinder as follows: Begin with two circles of radius r and
join them by strings of length h > 2r as shown. Now rotate the top circle 90◦ around
the central axis of the cylinder. What is the radius of the “waist” of the resulting
hyperboloid?



(A) r (B)♥ r/
√

2 (C)
√

2r (D)
√

1
2
r2 + h2 (E)

√
h2 − 2r2

Solution. Put coordinate axes in the cylinder as shown and consider the string
joining (r, 0, 0) to (r, 0, h).

After rotation, that string joins (r, 0, 0) to
(0, r, h′) for some height h′. The midpoint of the
segment is on the waist, at (r/2, r/2, h′/2), and
the distance from this point to the central axis
is
√

(r/2)2 + (r/2)2 = r/
√

2.

Alternative solution: Consider the view from the top.
The central circle fits inside each of the squares shown. The
squares have side length s =

√
2r, so the circle has radius

r/
√

2.

Problem 20. Suppose f(x) is a polynomial of degree 4 with integer coefficients and
f(2013) = f(2014) = 1. What is the largest number of integer solutions that f(x) = 0
can have?

(A)♥ 0 (B) 1 (C) 2 (D) 3 (E) 4

Solution. Write f(x) = a0 + a1x + · · · + a4x
4. Since f(2014) = 1, we see that a0 is

odd, and so f has no even roots. On the other hand, if n is odd, then

f(n) = a0 + a1n+ · · ·+ a4n
4 ≡ a0 + a1 + · · ·+ a4

≡ a0 + a1(2013) + a2(2013)2 + a3(2013)3 + a4(2013)4 = f(2013) ≡ 1 (mod 2).



So f also has no odd roots.

3 Hard Problems

Problem 21. Begin with a square. You may, if you choose, partition it into squares
by drawing lines parallel to the sides of the squares. All such partitioning lines must
completely cross, but not extend beyond, the square being partitioned. You now have
n2 squares, for some natural number n. Notice that a square, once partitioned, is no
longer included in the count.

You may now, if you choose, partition any of the squares in your partitioned
square. And you may, if you choose, continue to partition squares for any finite
number of steps.

Any such construction determines a certain number of squares, counting only
squares which are not further subdivided. How many positive integers do not arise
this way?

(A)♥ 7 (B) 8 (C) 9 (D) 10 (E) infinitely many

Solution. First notice that, if you can construct n squares, then you can construct
n + 3 squares by subdividing one square into 4. Since we start with one square, we
can use this observation repeatedly to construct any number of squares congruent
to 1 (mod 3). By first constructing 9 squares, we can also construct any number of
squares greater than 9 and congruent to 0 (mod 3). 2 is not a square mod 3, so it
takes two steps to construct the smallest number of squares congruent to 2 modulo 3:
17 = 32 +32−1. So we can also construct any number greater than 17 and congruent
to 2 (mod 3). This leaves 7 numbers: 2, 3, 5, 6, 8, 11, 14. One can check directly that
none of these numbers is constructible.

Problem 22. Let `1 be the line y = x and `2 the line y = 2x. Let

C = {p ∈ R2 : d(p, `1) + d(p, `2) = 1}.

Find the area of the region enclosed by C. Note: d(p, `m) is the perpendicular
distance from the point p to the line `m.



(A) 10π (B) 2
√

10π (C) 1 (D)♥
√

40 (E)
√

20 + 6
√

10

Solution. Begin by finding the points on `2 1 unit away
from `1: (a, 2a) is on `2; its reflection over `1 is (2a, a),
so its distance to `1 is 1 if and only d((a, 2a), (2a, a)) =√

2|a| = 2. So ±(
√

2, 2
√

2) are on C.
Notice that those points are

√
10 units away from

(0, 0), so by symmetry, the points on `1 that are
√

10
units from (0, 0) are also on C: ±(

√
5,
√

5).

Claim: C is the rectangle with vertices at ±(
√

5,
√

5), ±(
√

2, 2
√

2).

Assuming this, the length of the rectangle is d((
√

5,
√

5), (
√

2, 2
√

2)) =
√

20− 6
√

10,

and the width is d((
√

5,
√

5), (−
√

2,−2
√

2)) =
√

20 + 6
√

10. So the area is√
20− 6

√
10 ·

√
20 + 6

√
10 =

√
40.

We can see the claim using this very nice observation from plane geometry. If p is
on the base of an isosceles triangle, then the sum of the distances from p to the two
sides is independent of p.

Proof. Connect p to the opposite vertex and compare the
areas of the regions formed to the area A of the whole triangle:
1
2
bh = A = A1 + A2 = 1

2
bh1 + 1

2
bh2, so h1 + h2 = h.

Alternative solution: Using the formula for the distance between a point and
a line, we see that the set of points (x, y) belonging to C is the set of solutions to

|x− y|√
2

+
|2x− y|√

5
= 1.

This becomes the tilted square |X|+ |Y | = 1 under the change of variables

X =
1√
2

(x− y),

Y =
1√
5

(2x− y).

The map taking us from (x, y)-coordinates to (X, Y )-coordinates is a linear transfor-
mation of determinant 1√

10
(1 · (−1) − (−1) · 2) = 1√

10
. Since the sides of the tilted



square have length
√

2, the tilted square itself has area 2, and so the area enclosed
by C is 2 · (1/

√
10)−1 =

√
40.

Problem 23. If a0 = 0, a1 = 1, and an+1 = 1 + a2n−anan−1+1
an−an−1

for n = 1, 2, 3, 4, . . . ,
find the integer closest to a10.

(A) 4 (B) 11 (C) 15 (D)♥ 16 (E) 24

Solution. The sequence beyond a6 = 263
30

is too messy to compute, so consider instead
the sequence of first differences bn+1 = an+1 − an, where n ≥ 0. From this we’ll be
able to reconstruct a10 = b10 + b9 + · · · + b1. Now bn satisfies the recurrence b1 = 1
and

bn+1 = an+1 − an = 1 +
a2n − anan−1 + 1

an − an−1
− an

= 1 +
1

an − an−1
= 1 +

1

bn
.

Therefore, bn = fn+1

fn
, the ratio of consecutive Fibonacci numbers:

b1, . . . , b10 = 1, 2,
3

2
,

5

3
, . . . ,

89

55
.

Again, computing sums beyond about the 5th term is a bit messy, but we can take
advantage of the fact that the bi approximate the golden ratio φ ≈ 1.618 alternately
from below and above. In particular,

1 + 2 +
3

2
+

5

3
+ · · ·+ 89

55
< 1 + 2 +

3

2
+ 7 · 5

3
=

97

6
= 16

1

6
,

while

1 + 2 +
3

2
+ · · ·+ 89

55
> 1 + 2 +

3

2
+

5

3
+ 6 · 8

5
= 15

23

30
.

So the nearest integer is 16.
According to Wolfram Alpha, the actual value of a10 is 10796897/680680 =

15.8619 . . . .

Problem 24. A classic, from Sam Loyd: Mary and Ann’s ages add up to 44 years,
and Mary is twice as old as Ann was when Mary was half as old as Ann will be when
Ann is three times as old as Mary was when Mary was three times as old as Ann.
How old is Ann?

(A) 13 1
2

(B) 14 1
2

(C) 15 1
2

(D)♥ 16 1
2

(E) 17 1
2

Solution. Let M and A be Mary and Ann’s ages. Then

M + A = 44.



“Mary is twice as old as Ann was. . . ” is a reference to an earlier time, say B years
earlier, so

M = 2(A−B).

What happened B years ago? “Mary was half as old as Ann will be. . . ” This is
comparing Mary’s previous age to Ann’s age at a future date, say C years later, so

M −B =
1

2
(A+ C).

And what’s happening C years later? “Ann is three times as old as Mary was. . . ”
Another reference to an earlier time, D years earlier, when “Mary was three times as
old as Ann.” So

A+ C = 3(M −D)

M −D = 3(A−D).

This is a system of 5 linear equations in 5 unknowns. Solve carefully and you’ll find
A = 16 1

2
.

Problem 25. Let C1 be a circle of radius 1, and P1 a
square circumscribed around C1. For each n ≥ 2, let Cn be
the circle of radius rn circumscribed around Pn−1, and let
Pn be a regular 2n+1-gon circumscribed around Cn. Find
limn→∞ rn.

(A) 1+
√
5

2
(B) 2 (C) e (D) π (E)♥ π

2

Solution. First, find r2. In this diagram, θ = π/4 and
so r1/r2 = cos(π/4), i.e., r2 = r1/ cos(π/4). In general,
rn−1/rn = cos( π

2n
) — the angle is halved each time the

number of sides doubles. So

rn =
r1∏n

k=2 cos(π/2k)
.

What is
∏n

k=2 cos(π/2k)? Repeated use of the double-angle formula shows that

sin(x) = 2 sin(x/2) cos(x/2)

= 22 sin(x/4) cos(x/4) cos(x/2)

= . . .

= 2n sin(x/2n)
n∏
k=1

cos(x/2k).



We can rewrite the coefficient 2n sin(x/2n) as x sin(x/2n)
x/2n

. So we get

sin(x)

x
= lim

n→∞

sin(x/2n)

x/2n

n∏
k=1

cos(x/2k) =
∞∏
k=1

cos(x/2k).

Letting x = π/2, we get

2

π
=

sin(π/2)

π/2
=
∞∏
k=1

cos(π/2k+1),

and so
lim
n→∞

rn =
r1

2/π
=
π

2
.

A special case of this analysis is the beautiful formula found by Francois Viète in
1593:

2

π
=

√
2

2
·
√

2 +
√

2

2
·

√
2 +

√
2 +
√

2

2
· · · .

Authors. Written by Mo Hendon and Paul Pollack. We thank Will Kazez for his
help in drawing the pictures. The hyperboloid drawings in problem 19 are from the
Wolfram Demonstrations Project. The figure in problem 25 is due to Daniel West.

Sources. Problem 7 is adapted from the 1986 American Invitational Mathematics
Exam. Problem 11 is a variant of a 1983 contest problem from the New York City
Interscholastic Mathematics League. Problem 18 is adapted from Fifty Challenging
Problems in Probability by Frederick Mosteller. Problem 24 is due to Sam Loyd, a
well-known puzzler of the late 19th century of somewhat dubious character; for more
information on Loyd, see

http://en.wikipedia.org/wiki/Sam_Loyd

http://en.wikipedia.org/wiki/Sam_Loyd
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