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Instructions

1. At the top of the left of side 1 of your scan-tron answer sheet, fill in your last
name, fill in your first name, and then bubble in both appropriately. Below
the name, in the center, fill in your 4-digit Identification Number and
bubble it in.

2. This is a 90-minute, 25-problem exam.

3. Scores will be computed by the formula

10 · C + 2 ·B + 0 · I ,

where C is the number of questions answered correctly, B is the number left
blank, and I the number of questions answered incorrectly. Random guessing
will not, on average, improve one’s score.

4. No calculators, slide rules, or any other such instruments are allowed.

5. Scratchwork may be done on the test and on the three blank pages at the end
of the test. Credit will be given only for answers marked on the scan-tron sheet.

6. If you finish the exam before time is called, turn in your scan-tron sheet to the
person in the front and then exit quietly.

7. If you need another pencil, more scratch paper, or require other assistance
during the exam, raise your hand.



No calculators are allowed on this test. 10 points for a correct answer, 0
points for an incorrect answer, and 2 points for an answer left blank.

Problem 1. Suppose an > 0 for every integer n, and that an+1 = a2n − 2n. If
a4 = 2017, what is a0?

(A) 5 (B) 4 (C) 3 (D)♥ 2 (E) 1

Solution. Work backwards:

2017 = a23 − 23 =⇒ a23 = 2025 =⇒ a3 = 45

45 = a22 − 22 =⇒ a22 = 49 =⇒ a2 = 7

7 = a21 − 21 =⇒ a21 = 9 =⇒ a1 = 3

3 = a20 − 20 =⇒ a20 = 4 =⇒ a0 = 2.

Problem 2.

Of A and B this is the lore:

When added they make 24.

If A over 3

is A over B,

what’s A+ 2B plus 2 more?

(A) 28 (B) 29 (C)♥ 29 or 50 (D) 47 (E) 50

Solution. We are given the equations A + B = 24 and A
B

= A
3
. Rearranging the

second equation gives A(B− 3) = 0, so B = 3 or A = 0. In the first case A+ 3 = 24,
so A = 21 and A + 2B + 2 = 29. In the second case B + 0 = 24, so B = 24 and
A+ 2B + 2 = 50.

Problem 3. Draw the circle x2+y2 = 1, then draw the line through the “north pole”
(0, 1) meeting the x-axis at (2, 0). What is the x-coordinate of the other point where
the line meets the circle?



(A)♥ 4
5

(B)
√
2
2

(C)
√
3
2

(D) 2
3

(E) 1

Solution. The equation of the line is y = −1
2
x + 1. Substituting into x2 + y2 = 1,

we get x2 + (−1
2
x+ 1)2 = 1, or 5

4
x2−x = 0, which has roots x = 0 and x = 4

5
. Notice

that the corresponding y-coordinate is

y = −1

2

(
4

5

)
+ 1 =

3

5
,

so that the point of intersection is (4
5
, 3
5
). This is indeed on x2 + y2 = 1, because of

the identity 32 + 42 = 52.
Now try this problem again, replacing the point (2, 0) on the x-axis with (p

q
, 0) for

any rational numbeer p
q
. You’ll find the intersection point to be(

2pq

p2 + q2
,
p2 − q2

p2 + q2

)
.

Up to scaling and reordering of the legs, this parametrizes all Pythagorean triples:
(2pq, p2 − q2, p2 + q2).

Problem 4. In this magic square, there is exactly one way
to fill the empty squares so that every row, every column,
and both main diagonals add up to the same value. What
is that value? 1

3 2

(A) 15/2 (B) 9 (C)♥ 21/2 (D) 12 (E) 15



Solution. First fill the empty square with variables a, b, c, d, e, f , as shown:

1

3 2 f

ca b

d e

Notice that
c+ 1 + f = 3 + 2 + f ⇒ c = 4,

3 + e+ 4 = 4 + 1 + f ⇒ f = e+ 2,

2 + e+ b = 4 + 1 + f = 5 + e+ 2⇒ b = 5,

1 + e+ d = 4 + 1 + f = 5 + e+ 2⇒ d = 6,

3 + d+ a = 4 + 1 + f = 5 + e+ 2⇒ 9 + a = 7 + e⇒ a = e− 2,

a+ e+ f = c+ 1 + f ⇒ 3e = e+ 7⇒ e =
7

2
⇒ f =

11

2
, a =

3

2
.

So the common sum is 3
2

+ 7
2

+ 11
2

= 21
2

.

Problem 5. Which of the following is the graph of cos(y)− sin(x) = 0?

(A)

−1 1

1

1

π
2

π
2

− 3π
2

π
2

5π
2

− 3π
2

π
2

5π
2

(B) (C)

(D) (E)♥

Solution. Notice that

cos(y)− sin(x) = sin(
π

2
− y)− sin(x),



and so the solutions include all pairs (x, y) on the lines

x+ y =
π

2
+ 2kπ, k ∈ Z.

Since cos is even, the set of solutions is also symmetric about the x-axis; this eliminates
all possibilities except (E).

Problem 6. Consider the rectangle ABFE as shown in the figure below. ABCD
is a square. If CG = 1 and GD = 2, then what is the perimeter of the rectangle
ABFE?

A

B C

D E

F

G

2

1

(A) 6 + 2
√

5 (B) 10 (C) 12 (D)♥ 15 (E) 24

Solution. Since ABCD is a square and CD = 3, we have AD = 3. Now, since the
triangles CGF and AGD are similar, we get CF = 3

2
. Therefore, the perimeter of

the rectangle ABFE = 2[3 + 3 + 3
2
] = 15.

Remark. Keeping CG = 1 fixed and the length GD varying, say GD = x, one can
ask: what is the minimum perimeter of the rectangle ABFE that can be achieved?
Using the same method as above shows that CF = 1+x

x
= 1 + 1

x
and hence, the

perimeter of the rectangle ABFE = 2[3 + 2x+ 1
x
]. By the AM-GM inequality,

2x+
1

x
≥ 2
√

2

with equality achieved when 2x = 1
x
, that is when x = 1√

2
. Therefore the minimum

perimeter of ABFE = 6 + 4
√

2.



Problem 7. Let f(x) and g(x) be real-valued functions defined for all real numbers
x. Suppose that for certain constants a, b, A,B, we have that

0 < a ≤ f(x) ≤ A, and 0 < b ≤ g(x) ≤ B

for all real numbers x. Which of the following must also be true for all x?

(A) a
b
≤ f(x)

g(x)
≤ A

B
, (B)♥ a

B
≤ f(x)

g(x)
≤ A

b
, (C) A

b
≤ f(x)

g(x)
≤ a

B
,

(D) A
B
≤ f(x)

g(x)
≤ a

b
, (E) none of these must be true

Solution. Since g(x) ≥ b and b > 0, we have that 1
g(x)
≤ 1

b
. Since f(x) is positive

and f(x) ≤ A, we deduce that

f(x)

g(x)
≤ f(x) · 1

b
≤ A

b
.

Similarly, since g(x) is positive and g(x) ≤ B, we have that 1
g(x)
≥ 1

B
. Since f(x) ≥ a

and a > 0, we deduce that

f(x)

g(x)
≥ f(x) · 1

B
≥ a

B
.

So (B) must be true. We leave it to the reader to construct counterexamples showing
that none of the other inequalities must hold.

Attention! The following 5 questions (#8 – #12) all concern the functions c(θ)
and s(θ), which are defined as follows. Given an angle θ, which we will measure in
degrees, construct a triangle with angles θ and 45◦, and side lengths as indicated in
the diagram.

r q

p
45◦θ

Define c(θ) =
p

r
and s(θ) =

q

r
.

Problem 8. Find c(60◦).

(A) 1
2

(B)
√
2
2

(C)
√
3
2

(D) 1 (E)♥ 1+
√
3

2



Solution. See the following diagram:

60◦

√
3
2

︸ ︷︷ ︸
1/2

︸ ︷︷ ︸
√
3/2

1

45◦

Problem 9. What is the domain of c(θ)?

(A) [0◦, 360◦) (B) (0◦, 360◦) (C) (0◦, 90◦) (D)♥ (0◦, 135◦) (E) all real num-
bers

Solution. The angles θ and 45◦ must be part of a triangle whose third angle is
180◦ − 45◦ = 135◦. So we must have 0◦ < θ < 135◦.

Problem 10. What is the range of s(θ)?

(A) [−1, 1] (B) [0, 1] (C) (0, 1) (D) (0,
√

2) (E)♥ (0,
√

2]

Solution.

s(θ)

θ 45◦

1

Fix r = 1, so that the side opposite the
45◦ angle is the radius of a unit circle.
Then s(θ) is the length of the segment from
(cos(θ), sin(θ)) to the positive x-axis, making
a 45◦ angle. The largest of these occurs when
θ = 90◦, when s(90◦) =

√
2.

Problem 11. If c(θ) = 1, what is θ?

(A) 0◦ (B) 30◦ (C) 45◦ (D) 60◦ (E)♥ 90◦

Solution. If c(θ) = 1, then p = r, so the triangle is isosceles. The angles opposite p
and r are each 45◦, so θ = 90◦.



Problem 12. The curve in the plane parametrized by (c(θ), s(θ)) is part of which
kind of curve?

(A) a sine curve (B) a circle (C)♥ an ellipse that is not a circle
(D) a hyperbola (E) a line

Solution. The law of cosines implies that r2 = p2 + q2−2pq cos(45◦). Dividing by r2

gives 1 = c2 + s2−
√

2cs. This is the equation of a conic. To see which type of conic,
relabel c as x and s as y; then the equation of the conic assumes the “standard form”

x2 −
√

2xy + y2 − 1 = 0,

with discriminant (
√

2)2 − 4 · (1)(1) = −2. Since the discriminant is negative, the
conic is an ellipse. If it were a circle, then the coefficient of xy would vanish. So the
equation defines a noncircular ellipse.

Problem 13. Suppose a and b are nonzero decimal digits (1–9), with the property
that

(aa)2 + (bb)2 = aabb.

What is a+ b?

(A) 8 (B) 10 (C)♥ 11 (D) 16 (E) there are no such numbers

Solution. Since aa and bb are the multiples of 11 by a and b, it follows that

112 | (aa)2 + (bb)2 = aabb.

Hence, the quotient aabb/11 = a0b possesses a further factor of 11. By a familiar
divisibility test,

11 | a− 0 + b = a+ b.

Since a and b are nonzero digits, we have 0 < a+b < 18, and so a+b = 11. This shows
that the answer is (C), provided that there is such a pair of digits a, b. To check this,
note that the only candidates for ab are 29, 38, 47, 56, 65, 74, 83, 92; looking modulo 10
(i.e., at the final digits of (aa)2 + (bb)2 and aabb), all of these possibilities are quickly
eliminated except 83, and in fact

882 + 332 = 8833.

So the answer is indeed (C).

Problem 14. a and b are lines in the plane. If you translate a to the left 3 units, it
coincides with b. If instead you translate a up by 4 units, it coincides with b again.
What is the distance between a and b?

(A) 2 (B)♥ 12
5

(C)
√

12
7

(D) 2.5 (E) 1+
√
5

2



Solution.

4

3

h

θ

θ

φ

Both lines must have slope 4/3. By translat-
ing both lines, we can assume a is described
by the equation y = 4

3
x, as shown. We need

to find the height h. The two angles marked
θ are congruent (since both are complemen-
tary to φ), and so

sin(θ) = h/4, cos(θ) = h/3.

By the Pythagorean identity,

1 = sin(θ)2 + cos(θ)2

= h2
(

1

42
+

1

32

)
=

(
5

12

)2

h2,

and so h = 12/5.

Problem 15. How many ordered pairs of positive integers (x, y) satisfy x · y ≤ 100.

(A) 432 (B)♥ 482 (C) 532 (D) 572 (E) 582

Solution. If x · y ≤ 100, then either x or y is at most 10. Put the solutions (x, y)
into three categories: (a) those where x ≤ 10, (b) those where y ≤ 10, (c) those
where both x, y ≤ 10. Letting A, B, and C be the number of solutions in classes (a),
(b), and (c), we see that the total number of solutions is A + B − C. (We subtract
C to avoid double-counting.) Clearly, C = 10 · 102 = 100. Equally clearly, A = B.
To determine A, note that given x, the number of corresponding y with xy ≤ 100 is
precisely b100/xc; hence,

A = b100/1c+ b100/2c+ · · ·+ b100/10c
= 100 + 50 + 33 + 25 + 20 + 16 + 14 + 12 + 11 + 10

= 291.

So the total number of solutions is 2 · 291− 100 = 482.



Problem 16. What is the length of the shortest path that starts at (2, 1), touches
the x-axis, then returns to some point on the line y = 1

2
x.

(2, 1)

?

(A) 1 (B)
√

5 (C) 2 (D)♥
√
80
5

(E)
√
80+5
5

Solution.

(2, 1)

y = 1
2x

y = −1
2x

Look at the reflection of the line y = 1
2
x over

the x-axis. We need the shortest path from
(2, 1) to that line. This will lie on a line per-
pendicular to y = −1

2
x, so it lies on the line

of slope 2 through (2, 1): y = 2x − 3. This
intersects y = −1

2
x at (x, y) = (6

5
,−3

5
). So

the length of the shortest path is√√√√(2− 6

5

)2

+

(
1−

(
−3

5

)2
)

=

√
80

5
.

Problem 17. Consider a 5× 5 grid of points, as pic-
tured at right. How many squares can be drawn with
all four corners on the grid?

(A) 30 (B) 40 (C) 48 (D) 49 (E)♥ 50



Solution. Consider a (k + 1) × (k + 1) grid of points. There are exactly k squares
with corners on the outside edges of this grid.

In an n × n grid, the number of (k + 1) × (k + 1) grids is (n − k)2. Thus, the total
number of squares which can be formed is

4∑
k=1

(5− k)2k = 42(1) + 32(2) + 22(3) + 12(4) = 50.

Problem 18. Let
S = 3 + 33 + 333 + . . .+ 333 · · · 333︸ ︷︷ ︸

32 3’s

.

Find the sum of the digits of S.

(A) 189 (B) 153 (C)♥ 108 (D) 99 (E) 135

Solution. We have

S = 3(1 + 11 + . . .+ 111 · · · 111)

= 3

(
101 − 1

9
+

102 − 1

9
+ · · ·+ 1032 − 1

9

)
=

1

3

(
101 + 102 + · · ·+ 1032 − 32

)
=

1

3

(
111 · · · 111︸ ︷︷ ︸

30 1’s

110− 32

)

=
1

3

(
111 · · · 111︸ ︷︷ ︸

30 1’s

078

)
= 037037 · · · 037︸ ︷︷ ︸

30 digits

026.

So the sum of the digits of S is (3 + 7) · 10 + 2 + 6 = 108.



Problem 19. Recall that a “golden rectangle”
has the following properties:

(1) The ratio of the long side to short side is

g = 1+
√
5

2
.

(2) If you draw a line separating the rectangle
into a square and a smaller rectangle, then
the smaller rectangle is similar to the original
rectangle.

Now draw a quarter circle in each square as shown.
How long is this “golden spiral”?

(A)
π(1 +

√
5)

4
(B)♥

π(3 +
√

5)

4
(C)

π(1 + 3
√

5)

4

(D)
π(3 + 3

√
5)

4
(E) infinity

Solution. Since the starting square has length 1, the first arc has length 2π
4
· 1 = π

2
.

Each successive square has side length 1
g

times that of the previous square. Thus, the
length of the spiral is given by the following geometric series:

∞∑
k=0

π

2

(
1

g

)k
=
π

2

1

1− 1
g

=
π

2

g

g − 1
=
π

2
g2.

(We used in the last step that g is a root of x2 − x − 1, so that g − 1 = 1/g.) But

g2 = 3+
√
5

2
, and so π

2
g2 = π 3+

√
5

4
.

Problem 20. Find the exact value of cos(π/7) cos(2π/7) cos(3π/7).

(A)♥ 1
8

(B)
√
2
8

(C)
√
3
8

(D)
√
5
8

(E)
√
6
8

Solution. Let

A = cos(π/7) cos(2π/7) cos(3π/7),

B = sin(π/7) sin(2π/7) sin(3π/7).

Then

8AB = 2 cos(π/7) sin(π/7) · 2 cos(2π/7) sin(2π/7) · 2 cos(3π/7) sin(3π/7)

= sin(2π/7) sin(4π/7) sin(6π/7)

= sin(2π/7) sin(3π/7) sin(π/7)

= B.



(Here we used the double angle formula for sin to go from the first line to the second,
and we used the fact that sin(π − x) = sinx to move from the second to the third.)
Since B 6= 0, we conclude that A = 1

8
.

Problem 21. Let a0 = 2, a1 = 1, a2 = 2, and for n ≥ 2 define

an+1 =
an + an−1 + an−2

3
.

Find lim
n→∞

an.

(A)
√
5−1
2

(B)
√

2 (C) 3
2

(D) 1+
√
5

2
(E)♥ 5

3

Solution. We find and use an invariant. Notice that

3an+1 + 2an + an−1 = 3an + 2an−1 + an−2 = · · · = 3a2 + 2a1 + a0;

to see this, multiply the recurrence relation by 3, then add 2an + an−1 to both sides.
When n is very large, an+1, an, and an−1 all approach the same limit. Thus, writing
lim for the limit as n→∞,

6 lim an = lim 6an = lim(3an+1 + 2an + an−1)

= lim(3a2 + 2a1 + a0) = 3a2 + 2a1 + a0 = 3 · 2 + 2 · 1 + 2 = 10.

Hence, lim an = 10
6

= 5
3
.

Problem 22. Two children are playing on two toy pianos. Each toy piano has 5
notes. Every second each child switches at random from hitting the current note to
a different but neighboring note. If the children start at random notes, what is the
probability that they will eventually play the same note at the same time?

(A) 12
25

(B)♥ 13
25

(C) 3
5

(D) 4
5

(E) 1

Solution. Consider the difference between the two childrens’ notes. When they
switch notes, the difference between the notes remains even if it was even before
and remains odd if it was odd before. Thus if they start at notes which are an odd
distance away, they will never play the same note. On the other hand, eventually
one child will switch from playing a note lower than the other child’s to playing a
higher note than the other child’s (with probability 1). If the difference between the
two childrens’ notes was even, then this change must include having played the same
note. Thus the probability is just that of starting an even distance away from each
other, i.e. (

2

5

)2

+

(
3

5

)2

=
13

25
.



Problem 23. The functions e1−x and − ln(x − 1) intersect only at the point (p, q).
What is q − p?

(A) − ln 2 (B) − e
3

(C)♥ −1 (D) −4
3

(E) − e
2

Solution. Notice that e−x and − ln(x) are inverse functions i.e. if e−a = b, then
− ln(b) = a. Thus if (a, b) is on the graph of e−x, then (b, a) is on the graph of
− ln(x). Another way of saying this is that the graph of e−x is the graph of − ln(x)
reflected over the line y = x. Therefore if these two functions intersect at only one
point, it must be on the line y = x.

The given functions e−(x−1) and − ln(x − 1) are merely e−x and − ln(x) shifted one
unit to the right. Thus the point of intersection lies on the line y = x − 1 giving
q − p = −1.

Problem 24. For how many positive integers n ≤ 55 does 5 not divide

(
2n

n

)
?

(A)♥ 243 (B) 256 (C) 625 (D) 2401 (E) 2500

Solution. The exponent on the power of 5 dividing m! is given by bm/5c+bm/52c+
. . . . Hence, the highest power of 5 dividing

(
2n
n

)
= (2n)!

n!n!
is

∞∑
k=1

(⌊
2n

5k

⌋
− 2

⌊ n
5k

⌋)
.

Let {t} denote the fractional part of the real number t, defined by {t} = t−btc. Then

b2tc − 2btc = (2t− {2t})− 2(t− {t}) = 2{t} − {2t}.

This last quantity is always 0 or 1, according to whether 0 ≤ {t} < 1/2 or {t} ≥ 1/2,
respectively. In particular, the sum on k is a sum of nonnegative terms, and so is zero



precisely when each of its terms is zero. Moreover, if n = ajaj−1aj−2 . . . a0 in base 5
(so that each digit ai ∈ {0, 1, 2, 3, 4}), then

{n/5k} = 0.ak−1ak−2 . . . a0,

which is greater than or equal to 1/2 precisely when ak−1 = 3 or 4. Hence, the above
sum on k vanishes if and only if n has no 3’s or 4’s in its base 5 expansion. So below
each power 5K , there are 3K nonnegative integers n for which 5 -

(
2n
n

)
. We take

K = 5. Now in our problem, we we count up to and including 55, which adds 1 to the
count, but we exclude 0, which takes 1 away— so it’s a wash, and the final answer is
35 = 243.

Problem 25. A circular arrangement of 2017 lily pads floats in Shifrin pond. The
lily pads are consecutively numbered 0 to 2016, with lily pad 2016 next to lily pad 0.
Ted the Toad can jump forward n2 steps, for any positive integer n, wrapping around
the circle as necessary. (For example, starting from lily pad 0, he can reach lily pad 8
in one jump of length 452 = 2025.) What is the smallest positive integer d such that,
starting from lily pad 0, Ted can reach any other lily pad within d jumps?

(A)♥ 2 (B) 3 (C) 4 (D) 5 (E) 6

Solution. This is equivalent to finding the smallest d for which every integer is
congruent, modulo 2017, to a sum of d squares. Let p = 2017 and note that p is a
prime number. Thus, if a2 ≡ b2 (mod p), then

p | a2 − b2 = (a− b)(a+ b),

and so either a ≡ b or a ≡ −b (mod p). It follows that there are exactly 1009 distinct
squares modulo 2017, namely, the squares 02, 12, 22, . . . , (p−1

2
)2 = 10082. In particular,

not everything is a square, and so d > 1. We claim that everything is representable
as a sum of two squares modulo 2017, so that d = 2. To see this, let m be any integer,
and consider the list m − 02,m − 12, . . . ,m − 10082. All these numbers are distinct
modulo 2017. Since 1009 + 1009 > 2017, no two 1009-element lists of numbers can
be disjoint modulo 2017. Thus, there are integers a, b with 0 ≤ a, b ≤ 1008 with



m− a2 ≡ b2 (mod 2017). But then m ≡ a2 + b2 (mod 2017), so that m is congruent
to a sum of two squares.

Authors. Written by Mo Hendon, Alex Mann, Paul Pollack, Abraham Varghese,
and Peter Woolfitt. Problem #24 was contributed by Enrique Treviño.


