Work 5 of the following problems; if you try all 6, be sure to indicate which one you don't want counted. Justify all work.

m stands for Lebesgue measure on \mathbb{R} .

- 1. Suppose $f: \mathbb{Q} \to \mathbb{Q}$ is uniformly continuous. Prove that there is a continuous function $F: \mathbb{R} \to \mathbb{R}$ satisfying F(x) = f(x) for each $x \in \mathbb{Q}$. Then give an example to explain why *uniform* continuity of f is assumed.
- 2. Suppose $f: \mathbb{R} \to \mathbb{R}$ is a bounded (above and below) Lebesgue measurable function. Prove that the set $S:=\{a\in \mathbb{R}: m(f^{-1}(a,\infty))=0\}$ has a smallest member.
- 3. Evaluate $\lim_{y\to 0} \int_0^1 \frac{1-\exp(y\sqrt{x})}{y} dx$, being sure to justify your procedure completely.
- 4. Suppose $f: \mathbb{R} \to \mathbb{R}$ is continuous. Show that the graph of f is a Lebesgue measurable subset of \mathbb{R}^2 with zero measure.
- 5. Let $(X, \| \|)$ be a normed linear space over \mathbb{R} and suppose $\phi : X \to \mathbb{R}$ is a discontinuous linear functional. Prove that there is a sequence (x_n) in X satisfying $\lim_{n\to\infty} \|x_n\| = 0$, but $\phi(x_n) = 1$ for all n. Conclude that the null space of ϕ is not closed.
- 6. For each open subset U of \mathbb{R} , and each $p \in [1, \infty)$, write

$$L^p(U):=\{f:\mathbb{R}\to\mathbb{R}: f \text{ is Lebesgue measurable and } \int_U |f|^{p^j}<\infty\}.$$

- a) Prove that if U has finite Lebesgue measure, then $L^2(U) \subset L^1(U)$.
- b) Prove the converse of Part a).