There are five problems, each worth 20 points. Give complete justification for all assertions by either citing known theorems or giving arguments from first principles.

- 1.) For $n \in \mathbb{N}$, let $u_n(x) = \frac{\ln(1+x^n)}{n}$. For which $x \in \mathbb{R}$ does $f(x) = \sum_{n=1}^{\infty} u_n(x)$ converge? For which $x \in \mathbb{R}$ is f differentiable?
- **2.)** a.) Provide an example of a function $f: \mathbb{R}^2 \to \mathbb{R}$ which is continuous when restricted to any line through the origin, but is not continuous at the origin. (Give complete explanations of why your example has the desired property.)
- b.) Provide an example of a function $f: \mathbb{R}^2 \to \mathbb{R}$ which is everywhere differentiable when restricted to any line through the origin but is not differentiable at the origin. (Again, be sure to give complete justification that your example works.)
- 3.) a.) Let $E \subseteq [0,1)$ be a Lebesgue measurable set. Prove that

$$\int_E \sin(2\pi nx)\,dx \to 0 \quad \text{ as } \quad n \to \infty$$

by exploiting the fact that $\{e^{2\pi inx}\}_{n=-\infty}^{\infty}$ is an orthonormal set in $L^2[0,1)$.

- b.) Show that the above also holds for any measurable set $E \subseteq \mathbb{R}$ of finite measure.
- **4.)** Let $A,B\subset\mathbb{R}$ be two Lebesgue measurable sets of finite measure. For $x\in\mathbb{R}$ define the function:

$$f(x) = m(A \cap (B+x))$$

where $B + x = \{b + x; b \in B\}$ is the translate of the set B by x.

Prove that f is measurable, and

$$\int_{\mathbb{R}} f(x) \, dx = m(A) \, m(B).$$

5.) Let $\{f_k\}$ be a sequence of functions in $L^1(\mathbb{R})$ which converges, in the L^1 sense, to some function $f \in L^1(\mathbb{R})$. Prove that there is a subsequence of $\{f_k\}$ which converges pointwise almost everywhere to f.