Numerical Analysis Preliminary Examination

Spring 2003

Name______Student Id. No.______
Instruction: The following are ten problems in total. Please start each problem on a separate sheet of paper, write on only one side of the paper, and number each page. The

- [1] Suppose that $f \in C^2(\mathbf{R})$ is increasing and f'' > 0. Suppose that f has a zero. Show that the Newton iteration for computing the zero of f will converge for any starting point.
- [2] Let A be a strictly diagonally dominant. Show that the Gauss-Jacobi iterative method for solving $A\mathbf{x} = \mathbf{b}$ converges for any initial guess.
- [3] Let \mathbf{x} and $\tilde{\mathbf{x}}$ be the solution of two linear systems: $A\mathbf{x} = \mathbf{b}$ and $A\tilde{\mathbf{x}} = \tilde{\mathbf{b}}$. Show that

$$\frac{\|\mathbf{x} - \tilde{\mathbf{x}}\|}{\|\mathbf{x}\|} \le \operatorname{cond}(A) \frac{\|\mathbf{b} - \tilde{\mathbf{b}}\|}{\|\mathbf{b}\|}$$

where $\operatorname{cond}(A) = ||A|| ||A^{-1}||$ stands for the condition number of A. If the cond (A) is 10^{10} and a hypothetical computer does arithmetic operation to 15 significant digits, how many significant digits can you expect from the solution using this computer? Explain your reasoning.

- [4] Recall that for any nonzero vector v of size $n \times 1$, $I 2\frac{vv^T}{\|v\|^2}$ is called a Householder matrix, where I is the $n \times n$ identity matrix. Show that there exists a sequence of Householder matrices H_1, \ldots, H_n which converts any matrix A into a lower triangular matrix L, that is, $H_n \cdots H_1 A = L$.
- [5] Recall the 2×2 Givens rotation matrix is

time limit on this exam is three hours.

$$\begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}.$$

Use Givens rotation matrices to reduce the following matrix to a tridiagonal matrix:

$$\begin{bmatrix} 7 & 3 & -2 \\ 3 & 4 & -1 \\ -2 & -1 & 3 \end{bmatrix}.$$

[6] Let $p_n(x) = \sum_{i=0}^n c_i B_i^n(x)$ be a polynomial in B-form with respect to [a, b]. Here, $B_i^n(x) = \binom{n}{i} \left(\frac{x-a}{b-a}\right)^i \left(\frac{b-x}{b-a}\right)^{n-i}$ is defined on the interval [a, b]. Similarly, let

$$q_n(x) = \sum_{i=0}^n d_i \tilde{B}_i^n(x)$$
 with $\tilde{B}_i^n(x) = \binom{n}{i} \left(\frac{x-b}{c-b}\right)^i \left(\frac{c-x}{c-b}\right)^{n-i}$ defined on $[b,c]$. Derive the conditions that ensure

$$\frac{d^r}{dx^r}p_n(b) = \frac{d^r}{dx^r}q_n(b), \quad \forall r = 0, 1, 2.$$

[7] Suppose that $\phi_n, n = 0, 1, 2, \dots$, are orthonormal polynomials over interval [a, b]. Let $\{x_i^{(n)}, i = 1, \dots, n\}$ be the roots of polynomial ϕ_n of degree n for $n \geq 1$. Define the well-known Gaussian quadrature by

$$G_n(f) := \sum_{i=1}^n f(x_i^{(n)}) a_i$$

with
$$a_i = \int_a^b \prod_{\substack{j=1\\j\neq i}}^n \frac{(x-x_j^{(n)})}{(x_i^{(n)}-x_j^{(n)})} dx$$
, $i=1,\dots,n$. Show that $G_n(p) = \int_a^b p(x) dx$ for all polynomial p of degree $\leq 2n-1$.

[8] Show that the following Runge-Kutta's method has local truncation error $O(h^3)$:

$$K_1 = hf(x_k, y_k)$$

$$K_2 = hf(x_k + h/3, y_k + K_1/3)$$

$$K_3 = hf(x_k + 2h/3, y_k + 2K_2/3)$$

$$y_{k+1} = y_k + \frac{1}{4}(K_1 + 3K_3)$$