
Euclid’s Elements:  Introduction to “Proofs”  
 
Euclid is famous for giving proofs, or logical arguments, for his geometric statements.  
We want to study his arguments to see how correct they are, or are not.   
 
First of all, what is a “proof”?  We may have heard that in mathematics, statements are 
proved to be either true or false, beyond any shadow of a doubt.  In my opinion, this is 
not quite right.  Rather we play a game of logical deduction, beginning from a set of 
assumptions that we pretend are true.  Then assuming or pretending those things are 
true, we ask what other things would be true as well.  We do not discuss whether the 
things we are pretending to be true really are true, but if we run across a world where 
they are really true, then we may be sure that anything else we deduce logically from 
them will also be true in that world.  So there are statements we take for granted, called 
axioms or postulates or assumptions, and then there are statements called theorems 
that we deduce or “prove” from our assumptions.  So we don’t know that our theorems 
are really true, but in any world where the assumptions are true, then the theorems are 
also true. 
 
In Euclidean geometry we describe a special world, a Euclidean plane.  It does not 
really exist in the real world we live in, but we pretend it does, and we try to learn more 
about that perfect world.  So when we “prove” a statement in Euclidean geometry, the 
statement is only proved to be true in a perfect or “ideal” Euclidean plane, but not on the 
paper we are drawing on, or the world we are living in. 
 
It’s a game like Monopoly, or dungeons and dragons, where we have a certain goal we 
want to achieve, but there are rules we agree to play by. We only win if we follow the 
rules.  Sometimes the game gets boring, or too hard, and then we may just change the 
rules to make it easier or more fun.   
 
The rules Euclid tried to play by are stated in his 5 postulates, and his “common 
notions”.  One fun thing about reading Euclid is trying to catch him using a rule he forgot 
to state.  There are several places where this happens.  It is also fun to see how clever 
he is at getting by without some of the rules we usually give ourselves to make the 
proofs easier.  E.g. he makes his constructions not with ruler and compass, but with 
“straightedge” and compass.  We are so used to saying “ruler” that I am going to do this 
sometimes, but his straightedge does not have marks on it like our ruler. 
 
So Euclid’s geometry has a different set of assumptions from the ones in most 
schoolbooks today, because he does not assume as much as we often do now.  That 
makes some of his proof harder than ones in schoolbooks, because he does not give 
himself as much to go on.  His geometry is also different from that of professional 
mathematicians because he forgot to state some postulates that he actually uses, and 
mathematicians have had fun suggesting postulates he might have or should have 
stated.  Different people have different opinions about what the best postulates should 



be, so there is more than one way to do Euclidean geometry.  We will look at Euclid’s 
own version and make some choices of our own to fill in any gaps we notice. 
 
At first we are going to try to use only postulates 1-4, as Euclid did, as well as his 
common notions.  Those postulates are roughly as follows: 
1) We can draw a finite line segment between any two different points. 
2) We can extend a finite line segment as far as we want in a line. 
3) We can draw a circle if we are given a center and a point on the circumference. 
4) All right angles (half of a “straight angle”) are equal. 
 
Euclid also compares the size of different figures, the size of a collection of segments ia 
like the sum of their lengths, and the size of a plane figure is something like its area.  
But Euclid does not use numbers to measure either length or area, so he needs some 
rules to tell when two figures have the same size, or smaller or larger size.  His 
“common notions” are really postulates for the concept of equal size.  They mostly say 
that “equality” of (size of) figures behaves as we expect  E.g. if you add figures of the 
same size you get new figures of the same size, and a figure that fits inside another with 
room to spare is not equal to it in size.  
 
 
Week One: 
 
Day One:   Congruence  
The first notion is that of congruence of triangles.  A triangle is formed by three points 
not in a line, called vertices, and the three segments connecting them, called sides.  
Two triangles are congruent if there is a correspondence between their vertices, such 
that all three corresponding sides and all three corresponding angles are equal.  E.g. 
triangle ABC is congruent to triangle DEF by the correspondence A<-->F, B<-->E, C<--
>D, if corresponding sides are equal: AB = FE, BC = ED, CA = DF, and corresponding 
angles are equal: <ABC = < FED, <BCA = <CAB = <DFE. 
 
Short cuts for recognizing congruence 
We want to know when triangles are congruent by using less information than that.  A 
congruence of triangles makes 6 corresponding sides and angles equal, but usually it is 
enough to know less.  How much do you think would be enough? 
 
Usually three pieces of data is enough, but not just any three.  What do you think is 
enough to know?   [SAS,SSS, ASA, AAS, but not SSA, or AAA.  However you do learn 
something from AAA, and in fact SS-obtuseA is enough, i.e. two corresponding sides 
and a corresponding obtuse angle, or right angle.] 
 
Many books assume one or two or even three of these, maybe all four, as postulates, 
but Euclid gives “proofs” for all of them.  We are going to examine his arguments and 



see how convincing they are, and whether they really follow just from the few postulates 
he assumed. 
 
Just remember it is like a game, where the other player is trying to win.  Of course most 
of the time Euclid is going to win his own game.  But to understand his strategy, we 
should read his argument step by step and ask for a good reason for everything he 
does.  So go through his argument carefully and ask yourself why each step is allowed 
by the rules.  By rules, we mean the postulates and the common notions, and any 
propositions that have been proved before the one we are doing at the moment.  So in 
proving Prop. I.4, we can also use Propositions I.1, I.2, and I.3.  Thus, we can construct 
an equilateral triangle, and can make a copy of a given segment anywhere we want.  
Our book contains the reasons for some arguments in the margin. 
 
 
 
Book I: Congruence, parallels, and area 
 
Congruence: 
The first congruence result in Euclid is Proposition I.4, the famous “side - angle - side” 
or SAS rule.  Many books today take this as a postulate, i.e. they just assume it to be 
true.  Euclid proves it, but this is one important place where he lets himself do 
something he never said you could do in his postulates.  See if you can guess what it is.  
This is not obvious and I am sure I never would have noticed it.  Again we are sort of 
like fish and may not notice the sea we are in, because it seems so natural.   
 
Rigid motions and SAS: 
 
Prop. I.4:  If two triangles ABC and DEF have two sides equal, AB = DE, and AC = DF, 
and also have the included angles equal, <BAC = <EDF, then the other corresponding 
sides and angles are also equal; i.e., BC = EF, and <ABC = <DEF, <ACB = <DFE.   
 
proof of I.4:  Assume given triangles ABC and DEF with sides AB and DE equal, sides 
AC and DF equals, and angles BAC and EDF equal.  He claims that also sides BC and 
EF are equal, angles ABC and DEF are equal, and angles ACB and DFE are equal. 
 
 First Euclid “applies” or moves the triangle ABC onto triangle DEF.  I.e. he places point 
A down on point D, and lines up sides AB with side DE.  Then he says point B lies on 
point E because sides AB and DE were equal.   Now we should ask ourselves what rule 
or postulate allows this?   There is no rule saying we can move triangles, but we can 
copy segments, so we could always copy segment AB onto DE starting at D, and we 
would end at E since AB equals DE.  But now he says also that the angle BAC has 
moved over also to angle EDF.  Since we do not have a rule that we can copy angles, it 
is not clear to me how he gets a copy of angle BAC over on top of angle EDF.  Anyway, 



if we grant him that he can move his triangle without changing the sides or the angles, 
then angle BAC would lie on top of angle EDF, and then C would end at F.   
 
Now that B is at E and C is at F, it does seem that segment BC must equal segment EF, 
because they start and end at the same points.  Of course postulate 1 that says we can 
draw a line segment between any two points, does not say only one line, so we must 
add that to postulate 1.  The picture in Euclid’s proof appears to show two such 
segments, and there was some argument saying this is impossible but the editor 
removed it as unnecessary.  What do you think? 
 
 
Summary of I.4: This proof uses “rigid motions” without good reason.  Nowadays, some 
people add the postulate that one can move triangles without changing their sides or 
angles, so that Euclid’s proof becomes ok, and many other people prefer to just take 
prop. I.4 as a new postulate.  Which would you do?  For this reason there is not just one 
version of postulates for “Euclidean geometry”. 
 
The proof also needs an expanded version of postulate 1, that only one segment can 
join the same two points. 
 
Isosceles triangle principle, and self congruences 
The next proposition “the isosceles triangle principle”, is also very useful, but Euclid’s 
own proof is one I had never seen before. 
 
Prop.I.5:  If triangle ABC is “isosceles”, e.g. if sides AB and AC are equal, then the 
opposite angles ABC and ACB, are also equal. 
proof:  Euclid gives a clever but complicated proof, using Prop.I.4,.  First he extends 
sides AB and AC to longer, still equal, segments AE and AF, then he considers the new 
triangles AEC and AFB.  Since sides AE and AF are equal, as are sides AC and AB, 
and also angles EAC and FAB, the correspondence A<-->A, B<-->C, F<-->E, is a 
congruence of triangles ACE and ABF, by SAS (I.4).  Thus angles BEC and CFB are 
equal, as are sides EC and FB.  Since also sides BE and CF are equal, thus B<--
>C,C<-->B, F<-->E is a congruence of triangles BCE and CBF.  Since now angles ABF 
and ACE are equal, and also angles BCE and CBF, then by subtraction so are angles 
ABC and ACB.  QED. 
 
Discussion:  Notice that points E and F can be anywhere below points B and C, as 
long as segments AE and AF are equal.  But why not take E = B and F = C?  Then we 
get that the correspondence A<-->A, B<>-->C, C<-->B is a congruence of triangle ABC 
with itself, so that angles ABC and ACB correspond.  Thus these angles are equal! 
 
This much shorter argument was found later, perhaps by Proclus.  Almost all books 
today use this shorter proof.  Why do you think Euclid did not use it?  Is it confusing to 
think of a congruence of a triangle with itself, rather than of two different triangles?  This 



is why I have emphasized the correspondence that gives a congruent, instead of just 
saying that two triangles “are congruent”.  That is easier to say, but it is more precise to 
say that a certain correspondence is a congruence, since there may be more than one.   
 
To make this argument clearer some books draw another copy of triangle ABC with the 
sides flipped over so B and C are interchanged.  This may make it easier to picture 
because now there are two triangles instead of just one.  What do you think?  Which 
proof do you prefer?  Does drawing the second copy of the triangle help? 
 
Did Euclid use anything in this proof that he did not state? 
 
Remark:  Isosceles is a great spelling word! 
 
[Euclid also proves the converse, but this seems unnecessary, since it also follows from 
Prop. I.18, larger angle / larger side theorem. 
Prop.I.6: A triangle with two angles equal has the opposite sides equal as well.   
proof: His proof is clever and uses I.4 and common notion 5, seemingly in reference to 
the area of a triangle, but he could also use I.5 and use CM5 for angles.  I.e. if one side 
were shorter he copies that shorter side in the longer side, obtaining a triangle inside the 
original one but congruent to it by SAS, a contradiction. 
 
Discussion:  His proof seems to assume a triangle cannot be congruent to another 
triangle inside it, but there is no postulate stating that.  I.e. why can a triangle not be 
both inside of and also congruent to another triangle?  It seems more clear for angles, 
i.e. that an angle cannot be both greater than and equal to another angle.  Or have we 
missed something?  What does he mean by saying two triangles are “equal”?  This will 
come up again and we will learn more about “equality” of triangles.  The converse I.6 
seems easier to me after we have ASA congruence.  It also follows from Prop. I.18.] 
 
 
Day Two: 
 
The next proposition, “side-side-side”, is also famous and useful.  It was my favorite in 
school, probably because it is easy to remember.  Teaching this course I have learned it 
is also the one that lets us copy triangles by ruler and compass by copying their sides. 
 
Line separation and “side - side - side” (SSS): 
Prop.I.7-8:  If ABC and DEF are two triangles and the correspondence A<-->D, B<-->E, 
C<-->F makes corresponding sides equal: AB = DE, AC = DF, and BC = EF, then the 
corresponding angles are also equal, <BAC = <EDF, <ABC = <DEF, <ACB = <DFE. 
proof:  Using a rigid motion, move base EF over to lie on base BC with E at B, and F at 
C.  Flip triangle DEF if necessary to get vertex D on the same side of base BC as vertex 
A.  Then Euclid claims that vertex D will lie on vertex A.  His argument is by 
contradiction.  There are several cases. 



 
Try to imagine how this could fail?  Say D lies on segment AC but not at A.  [Since F lies 
at C, then side AC would not be equal to side DF.  So this cannot happen. ] 
 
Now suppose D lies outside triangle ABC and off to the right (so neither triangle ABC 
nor DBC contains the other).  Then look at triangles BAD and CAD.  Since sides BA and 
BD are equal, by I.5 angles BAD and BDA are equal.  But for the same reason, angles 
CAD and CDA are equal.  But CDA contains BDA, which equals BAD, which contains 
CAD.  Thus CAD is smaller than CDA by common notion 5, a contradiction. 
 
What other cases can you think of?  (D inside triangle ABC?  Then what?  Note that 
sides AB and AC divide that side of line BC into 4 parts.  So D could be in any one of 
those parts, or it could be on one of those lines.  So there seem to be 8 cases.  But 
some of them are symmetrical wrt others and do not need to be done again.  I think 
there are essentially three cases.) 
 
Discussion:  The cases we listed are based on the assumption that a line separates 
the plane into two sides.  But how do we know this?  This is another fact Euclid forgot to 
state, although he has used the language of “sides” of a line several times, e.g. in 
postulate #5, and proposition 7.  It is related to the fact that the plane has two 
dimensions, which is not so easy to make precise.  So we need another postulate, that 
every line separates the plane into two sides, and we should say that we can tell when 
two points are on the same side of a line, because then the segment joining them does 
not cross the line. 
 
Alternate proof: Croix suggested a different looking proof, which also starts out moving 
base EF over to lie on base BC with E at B, and F at C.  But he then flips triangle DEF if 
necessary to get vertex D on the opposite side of base BC from vertex A, instead of the 
same side.  Then he also connects up segment AD, which now crosses the base BC = 
EF at some point X.  Suppose X lies between B and C.  Then he also considers the 
isosceles triangles ABD and ACD.  By the isosceles triangle principle again, angles 
BAD and BDA are equal, as are angles CAD and CDA.  But now we have a positive 
conclusion that, by adding, angles BAC and BDC are equal.  Thus by SAS triangles 
BAC and BDC are congruent.  Since DBC is congruent to our original triangle DEF.   
 
This simple variation on Euclid’s argument has an advantage, for people who wish to 
avoid the law of excluded middle, that it is direct instead of indirect.  There are again 
several cases to deal with depending on where the point X is, since it could lie outside 
the base BC, or could lie at B or C, and again we need the plane separation property to 
be sure we have all cases. 
 
Remarks:  After proving SSS, we no longer need to assume rigid motions to move a 
triangle, because we can copy segments.  Thus by SSS we can copy triangles and thus 
also angles.  In particular we do not need a protractor to copy angles.  Some books 



assume SAS and that one can copy both segments and angles. By SAS, copying two 
segments and one angle lets us copy a triangle without assuming rigid motions.  Which 
do you prefer?  In fact I think Euclid no longer uses rigid motions from here on. 
 
Notice also that if Euclid is assuming rigid motions, then he could use them to move or 
copy segments, so why did he assume he could copy segments? 
 
Some books use straws and strings to support SSS physically, but note this only shows  
that the triangle does not “wobble” if the sides do not change.  There could still be 
another different triangle with the same sides.  [For instance there are usually two 
different triangles with the same SSA data, but they are not close to each other, so you 
cannot wobble one into the other.  So showing that a triangle cannot wobble when 
certain measurements are fixed only suggest there are only a finite number of such 
triangles, it does not really argue there is only one.] 
 
Exercise:  Use a compass to copy a triangle ABC onto a segment EF which equals BC.  
[Place center of compass at E and draw circle of radius BA.  Then place it at F and draw 
a circle of radius CA.  They intersect at D so that DEF is congruent to ABC.] 
 
Exercise:  Angle - side - angle congruence (ASA) 
The next congruence result is called ASA, “angle-side-angle”.  It can be proved in the 
same way as the previous ones.  You try it. 
 
[Proposition I.26(a)  If two triangles ABC and DEF have two angles equal, say <ABC = 
<DEF, and <ACB = <DFE, as well as the included sides BC = EF, then the other 
corresponding sides and angles are also equal, i.e. the correspondence A<-->D,  
B<-->E, C<-->F is a congruence. 
proof: We could move triangle ABC over onto DEF so that base BC lies exactly long 
EF.  Then we just need to show that vertex A lies on vertex D.  By the equality of 
angles, we know side BA does lie along side ED, and we also know side FD lies along 
side CA.  But then vertex A, which is on both sides BA and CA, must lie on sides ED 
and FD, i.e. A must lie at D.  Notice we did not use any of the earlier propositions in this 
argument, but we used a rigid motion. 
 
Euclid does not use this proof. Rather he can now copy an angle by using SSS, and he 
knows by SAS, that copying two sides and an angle, suffices to copy a triangle.  So now 
that Euclid can copy sides and angles and he has SAS, he stops using rigid motions, 
and instead he just copies triangles.  So he says he will copy side BA onto side ED, 
from E to X.  Then by SAS, he knows triangle XEF is congruent to triangle DEF.  But 
then angle XED should equal angle ACB, which only happens if point X = point D. 
QED. 
 
Exercise(Prop.I.6): Prove that a triangle with two equal angles has the two opposite 
sides equal, using ASA and the same congruence as for the isos. triangle principle. 



 
Question: what happens when you try this proof for AAS? 
 
Answer:  You need to know that if you draw two different segments px and py from the 
same point p to the same line L, (with p not on L), then the two angles the segments px 
and py make with L are different.  And we do not know how to prove this yet!  So next 
we introduce the wonderful “exterior angle theorem” of Euclid. Prop. I.16. 
 
 
Day Three: Angle - angle - side congruence (AAS) and exterior angles 
Now what about the last famous congruence theorem, AAS?  What happens when we 
try to prove that as before?  Suppose in triangles ABC and DEF, that angles B and E 
are equal, and angles C and F are equal, and sides AC = DF.  Now we can move 
triangle ABC over onto DEF so that side AC lies on side DF, and angle C fits onto angle 
F, so that base BC lies along base EF.  But how do we know that vertex B is at vertex 
E?  WE are supposed to have angle ABC equal to angle DEF, and if vertex B is closer 
to vertex C=F than E is, it looks as if angle ABC would be larger than angle DEF, 
because it is an “exterior angle” for triangle DEB.  But we do not know anything about 
exterior angles yet.  So we need to prove that result. 
 
This exterior angle theorem of Euclid, is proved without using postulate 5, and this is a 
theorem I did not see in my high school class.  It is much easier to prove using postulate 
5, but Euclid gives a clever proof with only the other postulates, so we want to see how 
he did it.  This will make the theorem true also in another geometry called hyperbolic 
geometry, where postulate 5 does not hold. 
 
Exterior angle theorem and “vertical angles” 
 
Exercise(I.15):  If two lines cross at P they make four angles with alternate or “vertical” 
angles equal in pairs.  [Hint: all “straight angles” are equal, by postulate___ ?] 
 
Remark:  We need to know how to bisect a segment now. (This was discussed in 
constructions class.) 
 
Prop.I.16(Exterior angle theorem):  If any side of a triangle be extended, the exterior 
angle formed is greater than either of the two remote interior angles. 
Proof: Given triangle ABC, extend base BC past C to D.  Claim angle ACD is greater 
than angle BAC.  To prove this we will try to make a copy of angle BAC inside angle 
ACD. 
Bisect side AC at X and extend BX equally to Y, so that BX = XY.  Connect YC.  Now 
claim B<-->Y, A<-->C, X<-->X is a congruence of triangles BAX and YCX, by SAS, 
using vertical angles and construction.  Hence angle <ACY = <XCY = <XAB = <CAB, 
and <ACY is inside angle <ACD, hence smaller.  QED. 
 



Exercise:  Why is angle ACD also larger than angle ABC? [Hint: What angle is “vertical” 
to <ACD?] 
 
Exercise: Prove Prop. I.26b(AAS) 
 
Exercise: Prove Prop. I.17: In any triangle, any two angles together are less than a 
straight angle. 
 
The triangle inequality: 
Next Euclid explains exactly which segments can be sides of a triangle.  First he proves 
a useful fact related to the isosceles triangle principle.  I.e. not only are the angles 
opposite equal sides equal, but the smaller angle is opposite the smaller side.  This is 
another very useful and natural result I do not recall from my high school class. 
 
Larger side / larger angle theorem: 
Prop. I.18:  In any triangle, the greater side is opposite the greater angle. 
Proof: Assume not.  Let angle <ACB be greater than <BAC and assume side AB is less 
than base BC.  Extend side BA past A to X so that BX equals BC.  Then in triangle BXC, 
sides BX and BC are equal so angles <BCX = <BXC.  Now <BAC is exterior to <BXC 
hence <BAC is greater.  But <BAC was assumed smaller than <ACB = <BCX = <BXC, a 
contradiction.  QED. 
 
Remark: Prop. I.18 also implies Prop.I.6, converse of isosceles triangle principle. 
 
Prop.I.20.(triangle inequality): In every triangle, any two sides together are greater 
than the third side. 
Proof: The previous proposition, may suggest trying to make a new triangle in which 
one side equals two sides of the original triangle, and then look at the angles opposite.  
So extend side BA to X, so that BX = BA + CA, i.e. AX = CA, and look at triangle BXC.  
Since sides AX = CA, angle BXC = <AXC equals angle <ACX, which is inside angle 
<BCX.  Hence the side opposite <BCX is larger, i.e. BX = BA + AC > BC.  QED. 
 
 
Existence of triangles:(a construction) 
The opposite question, of whether any three segments for which this is true can actually 
be sides of a constructed triangle is more subtle, and belongs to the study of what 
constructions are possible. 
 
These seem to me like the most important congruence results.  [Hint: learn them.] 
Summary:  We have proved congruence theorems SAS, SSS, ASA, and AAS.  We 
have also proved the isosceles triangle principle, greater angle - greater side, equality of 
vertical angles, exterior angle theorem, and triangle inequality.   



We have had to assume as new postulates: existence of rigid motions, there is only one 
segment joining two points, every line separates the plane into two sides.  However, we 
have not needed to use postulate #5 so far.  That changes tomorrow. 
 
 
Day Four:  Parallel lines 
Two lines are parallel if they do not meet, no matter how far extended.  In my high 
school class we assumed that through a point off a line there is one and only one line 
parallel to the given line.  This is not the same as Euclid’s “parallel postulate” #5.  It will 
turn out that his postulate #5 gives a rule for two lines not to be parallel, while the 
exterior angle theorem gives a way to show that some lines are parallel.  Here is 
another place where Euclid could do more with less, than some modern geometry 
books. 
 
First we see how Euclid proved that parallel lines exist, with only the first 4 postulates 
(and our extra ones), and the propositions we have proved up to now. 
 
[We don’t seem to need the next proposition for this proof. 
Prop. I.17: In any triangle, any two angles together are less than a “straight angle”. 
Proof:  If we add to any angle of a triangle the corresponding exterior angle, we get a 
straight angle.  The exterior angle theorem says that each of the other two angles of the 
triangle is less than the exterior angle.  Thus adding either of them to the original angle 
gives less than a straight angle.  QED.] 
 
Prop.I.27: (alternate interior angle theorem, AIAT).  If two lines cross a common third 
line, and two alternate interior angles they make are equal, then the two original lines 
are parallel. 
Proof: (By contradiction.)  Suppose they are not parallel.  Then they meet say at X.  Let 
the points where the third line meets these two lines be A and B, and consider triangle 
ABX.  I claim it violates Prop. I.16, because one of the alternate interior angles is an 
exterior angle for this triangle, while the other equal one is a remote interior angle.  
Hence they cannot be equal by Prop.I.16.  This contradiction proves the theorem.  
(What do you think?) QED. 
 
Prop.I.28:  If two lines cross a common third line and the interior angles they make on 
the same of that third line add to a straight angle, then the first two lines are parallel. 
Proof: This implies that two alternate interior angles are equal so we are done by the 
previous result.  (Do you agree?)  QED. 
 
Exercise:  Two lines perpendicular to the same line are parallel to each other. 
 
[Now we need to be able to copy angles, or construct perpendiculars.] 
Prop.I.31:  Through a point P off a line L, there passes at least one line parallel to L. 



Proof:  We know how to copy triangles, hence also angles, using SSS.  So choose any 
point Q on L and draw line PQ.  Then through point P construct a line M making an 
angle with PQ equal to the alternate interior angle made by PQ and L.  Then M must be 
parallel to L. QED. 
 
second construction: 
Just drop a perpendicular K from P to L.  Then erect a perpendicular M to K through P.  
Then the angles formed by L and M on the same side of K are both right, hence add to 
a straight angle.  QED. 
 
Up to now, Euclid has never used postulate #5, but the next familiar result requires it. 
Exercise:Prop.I.29  Prove the Z principle (converse of the AIAT), using postulate #5.  
I.e. if L and M are parallel, and K meets both of them, then any two alternate interior 
angles are equal.  (Hint:  Show two interior angles on the same side of K add to a 
straight angle.  Why does that help?) 
 
Cor:  Through a point P off a line L there is exactly one line parallel to L. 
proof:  Drop a perpendicular K from P to L.  We already know that the line 
perpendicular to K at P is parallel to L.  We will show that no other line through P is 
parallel to L.  If M is any line through P not perpendicular to K, then on one side or the 
other M makes an angle less than a right angle.  On that side, the two interior angles K 
makes with L and M add to less than a straight angle, so by postulate #5, the lines L 
and M meet on that side.  Hence M is not parallel to L. QED. 
 
Now at last we can prove a famous result of Euclidean geometry that would not be true 
without postulate #5. 
Prop.I.32  (i) The angles of any triangle ABC add up to a straight angle, and 
 (ii) an exterior angle of a triangle is equal to the sum of the remote interior angles. 
Proof: (i)  Pass a line L through the vertex A parallel to the base BC.  Then by the 
converse of the Z principle, the two angles adjacent to angle BAC are equal to the 
angles <ABC and <ACB.  Since the three angles at the vertex A do add to a straight 
angle, so do the interior angles of triangle ABC.  QED. 
(ii) An exterior angle adds up to a straight angle with the adjacent angle, as do also the 
two remote interior angles, so the exterior angle equals those two angles. QED. 
 
Remark:  Although this is more precise than the earlier exterior angle theorem, we used 
that theorem to prove the existence of a parallel line.  So books that do not present the 
earlier exterior angle theorem cannot prove the current result without assuming both the 
existence and uniqueness of parallel lines. 
 
 
 
 
 



 
Day five:  Parallelograms 
 
We have studied triangles, i.e. three sided polygons, so next we look at some important 
four sided polygons. 
 
(Parallelogram is another great spelling word.) 
 
Definition: A parallelogram is a four sided plane figure such that each side is parallel to 
the opposite side.  (For instance if the vertices are ABCD in clockwise order, then AB is 
parallel to CD and BC is parallel to DA.) 
 
There are several other ways to recognize a parallelogram. 
Prop.I.33 If a quadrilateral has one pair of opposite sides are both equal and parallel, 
then it is a parallelogram. 
Proof: Draw a diagonal and use SAS and Z principle (converse of AIAT), to show the 
two triangles are congruent.  Then AIAT shows the other two opposite sides are parallel.  
QED. 
 
Prop.I.34  In a parallelogram all opposite sides and all opposite angles are equal, and 
the diagonal bisects the parallelogram into two congruent triangles. 
proof: The diagonal bisects it by Z principle and ASA congruence, hence the opposite 
sides (and angles again) are equal.  QED. 
 
Exercise: A plane quadrilateral is a parallelogram if and only if one of these is true: 
i)  opposite sides are parallel 
ii)  opposite sides are equal 
iii) opposite angles are equal 
iv) the diagonals bisect each other 
v)   one pair of opposite sides are both equal and parallel 
 
 
 
 
Day six: Area, or “content” of plane figures, 
 
Next Euclid introduces a concept of plane figures as being “equal” to one another rather 
than congruent.  When we say equal we usually mean two things are the same thing, so 
for us the word equal is even stronger than congruent.  But for Euclid it is weaker.   
When he wants to say two figures are actually the same figure he says they “coincide”.   
 
He has spoken before about two segments together being “equal” to another one, and 
of two angles together being “equal” to another one.  In those cases the figures were not 
congruent, but merely had the same size in some sense.  Here again, when Euclid says 



two plane figures are equal, he means they have the same size, or as we would say, the 
same area.   
 
But Euclid is not using numbers to measure size, so he cannot assign a numerical area 
to a figure.  So how does he know when two figures are “equal”, or have “equal content”, 
as we say today?  We can find out by reading his proofs that two figures are “equal”. 
 
Prop.I.43. If we choose a point on the diagonal of a parallelogram and pass two lines 
through it parallel to the two sides, dividing the original parallelogram into four smaller 
ones, then the two “off diagonal” parallelograms are equal. 
Proof: These figures result by subtracting congruent triangles from triangles that are 
also congruent, all by Prop. I.34.  Hence they are “equal” (in content).  QED. 
 
Thus Euclid considers congruent figures to be equal, and “differences” of congruent 
figures also to be equal.  This makes sense if equality is in the sense of size or area. 
 
Here is the fundamental way Euclid determines two figures have the same content. 
Prop. I.35.  Two parallelograms on the same base and in the same parallels, are equal. 
 
[Note: we would say the two parallelograms have the same height, but Euclid cannot 
say this since height is a number.  See how clever he is at giving a purely geometric 
way of saying two parallelograms have the same height.] 
 
Proof:  He proves this by cutting up one figure into pieces that fit together to form the 
other figure.  Or rather he does this after adding the same piece to both figures.  So he 
is saying that two figures are equal if they can be decomposed into pieces which are 
congruent to each other, or if we can add congruent pieces to both of them so that 
afterwards the resulting enlarged figures can be decomposed into congruent pieces.   
 
More simply, congruent figures are equal, sums of equal figures are equal, and 
differences of equal figures are equal. 
 
His proof is quite nice and interesting to me.  After reading it I realized I have never 
explained this correctly in my calculus classes.  There are two cases and I only did the 
easier case. 
 
When two parallelograms have the same base it is easier to cut one into pieces and 
reassemble it to form the other (on the same base) if the left top vertex of one is 
between the top vertices of the other.   



 
Euclid does the harder case where both vertices of one parallelogram are entirely to the 
right of both vertices of the other.  In this case it is not so easy to cut one into pieces 
that can be arranged to form the other, so he uses subtraction.  

 
I.e. here triangles abe and dcf are congruent by SAS (do you see why?).  Then if we 
add in triangle axd to both, and subtract triangle cxe from both, we get the two 
parallelograms.  Hence those have equal content, or area. 
 
 
Problem: In fact even in this harder case, you can decompose one parallelogram into 
pieces that form the other without subtraction.  Can you figure out how?  [For this 
solution you may assume Archimedes postulate, that any segment can be copied 
several times end to end, until it reaches any point on the extended line through it.] 
 
Prop. I.36.  Assume the bases are only equal (in length) rather than the same, and on 
the same line, and both vertices are on the same parallel line.  Prove they are equal. 
Proof:  How do you suggest we reduce to the previous case?  What clever thing does 
Euclid do to avoid using a rigid motion?  What property of “equality” of figures does he 
use here? (transitivity)  Can you justify that property for the relation of equal content?  In 
particular, is “equal content” an equivalence relation? 
 
Next we get an interesting argument for triangles that seems to be missing a step. 
Prop. I. 37.  Two triangles on the same base, and in the same parallels, are equal. 



Proof:  This time Euclid does not decompose one triangle into pieces that form the 
other, nor does he even do it using subtraction. Rather he doubles the triangles, to form 
two parallelograms that are equal.  Assuming halves of equals are equal (this is the 
missing common notion), I.37 seems to follow from I.36.   QED. 
 
Discussion: Euclid has not said in common notions that halves of equals are equal.  
Does this follow from his other notions?  If two figures are not equal, does one have to 
be smaller than the other?  Why?  If half of figure A were not just smaller than half of B, 
but equal to a strictly smaller part of half of figure B, would it follow that A is smaller than 
B?  If we knew that, then we could argue that if A is equal to B then half of A could not 
be equal to a part of half of B, nor vice versa, so the halves must be equal.  But it seems 
this goes beyond what has been stated about equality of figures.  
 
I.e. even if two figures are made of the same congruent pieces, cutting each figure in 
half does not always cut the pieces in half, so it is not clear how one can decompose the 
halves also into congruent pieces.  Indeed it seems easier to argue that adding equals 
to equals gives equals, so why did Euclid postulate (as common notion) the easier fact 
rather than the harder one?  
 
An alternative argument 
Hartshorne’s book contains an argument (also occurring in Hilbert), reducing the case of 
triangles to the case of parallelograms, but without assuming halves of equal figures are 
equal.  Rather he bisects one side of one triangle, and reassembles the pieces to make 
a parallelogram equal to the original triangle, not one twice as large.  Then he must 
prove, that the same line through the midpoint of that side, and parallel to the base, also 
bisects the side of the other triangle.  This is the first case of the theory of similar 
triangles, and it took me a bit of work.   
 
The moral is the theory of similarity always makes questions on areas easier, but that 
theory takes a lot of work to develop.  Thus books that use similarity to make area 
theorems like Pythagoras look easy, are often hiding the difficulties of similarity theory.  
Indeed some books define area of triangles as ½ base times height, use that to 
establish the theory of area, and then later use the theory of area to prove the 
foundational facts of similarity theory.  
 
The problem here is that a triangle has three different bases and three different heights, 
and the most natural way to prove that all three choices give the same area, is to use 
the theory of similarity. So these books are hiding the need for similarity in their 
development of area, and then using area to justify similarity theory. This is called 
“circular reasoning”. 
 
The whole point:  For both parallelograms and triangles, area depends only on base 
and height. 
 



 
 
 
Pythagoras’ theorem 
Now we want to prove the most famous theorem in geometry, using Euclid’s own proof.  
There are many other proofs, one using similar triangles that is very algebraic, and 
others using decompositions.  Euclid does not have the theory of similar triangles at this 
point, so he uses his theory of decomposing into triangles with the same base and in 
the same parallels.  I had never seen this proof until a few years ago.  An animation of it 
is available on the web at “Cut the knot”. 
 
Prop. I.47 If squares are constructed on the sides of a right triangle, the square on the 
side opposite the right angle is equal to the other two squares taken together. 
Proof:  We will give the proof in pictures.  If the right angle is at c, drop the 
perpendicular as below, dividing the square on the hypotenuse into two rectangles, C1 
and C2.  Euclid will show that square B equals rectangle C1 (in area), and square A 
equals rectangle C2 (in area). 

 
 
To do so, he will show this is true of triangles formed by bisecting the respective 
rectangles and squares. 



 
The triangles <zab> and <cay> are congruent by SAS, since angles <zab and <cay both 
equal angle <cab plus a right angle, and the sides (ac) and (az) are sides of the same 
square, as are sides (ay) and (ab). 
  
Now by Prop. I.37, triangle <zab> equals triangle <zac> in content, hence it equals half 
of square B.  Similarly triangle <cay> is equal to half of rectangle C1. 
   
Since doubles of figures with equal content also have equal content, C1 has equal with 
square B.  Similarly rectangle C2 has equal content with square A.  Adding, square C = 
C1+C2 has equal content with the sum of squares A+B.  QED. 
 
 
 
Week Two:  Lines and angles in circles, geometric algebra, construction of a 
regular pentagon, and Archimedes’ results on volume 
 
This week we will discuss some topics from Books II, III, IV, and XII of Euclid.  In Book II 
Euclid does elementary algebra purely geometrically.  We will use line segments in 
place of numbers, and we will define multiplication and division using segments.  The 
product of two segments is defined to be the rectangle having those segments as sides, 
or any other rectangle equal to it in size (i.e. with same content or area).  We will learn 
to take square roots and solve quadratic equations geometrically, at least those 
equations with positive real roots. 



 
One of our goals is to learn how Euclid constructed a regular pentagon (5 sided 
polygon) in a given circle, as we have done with an equilateral triangle (3 sides), a 
square (4 sides), and a regular hexagon (6 sides). Euclid first shows (Prop.II.11) how to 
solve the quadratic equation X^2 +RX – R^2 = 0, and then he shows how to use the 
solution to construct a pentagon.  He proves that the length X that solves this equation 
is the side of a regular decagon in a circle of radius R.  Then connecting every other 
point of the decagon gives a regular pentagon.   
 
[We showed last Friday that the positive solution to the quadratic equation above, X^2 
+RX – R^2 = 0, can be found by completing the square to get (X+R/2)^2 = R^2 + 
(R/2)^2.  Then Euclid uses Pythagoras to find the solution of this equation.  I.e. he 
constructs a right triangle with sides R and R/2, whose hypotenuse is thus X+R/2.  Then 
to get X we just subtract R/2 from the hypotenuse.  This solution process is Euclid’s 
Prop. II.11.  This shows how to construct the solution of this equation, but we still have 
to show that solution is really the side of a regular decagon in the circle of radius R.  The 
proof of that is Prop. IV.10.  The proof is usually given in modern books using 
trigonometry, but I like Euclid’s beautiful geometric argument.  (Try to include a picture 
of the pentagon construction.) 
 
This is a long story, and we have a lot to learn before we get there.  So we take it one 
step at a time.  First we study how lines and circles meet, then the angles lines make in 
circles, and the area of rectangles associated to lines meeting in circles.  Finally this is 
applied to the theory of similarity, and to construct an isosceles triangle whose vertex 
angle is 1/5 of a straight angle.  (This is the triangle made by joining two consecutive 
vertices of a regular decagon in a circle, to the center of the circle.) 
 
 
Week Two. Day 1)  How lines and circles meet 
 
Tangent lines to circles.  
We all probably know that in Euclidean geometry a line meets a circle at most twice, 
and meets it just once if and only if it is tangent to the circle.  Indeed it is almost 
universal today to define a line as tangent to a circle at a point P if and only if the line 
meets the circle at P and nowhere else, and even to claim that this definition is Euclid’s 
own.  After reading Euclid, it seems this usual definition differs from the one Euclid 
gave, although the two may be proved to be logically equivalent.  We will discuss 
Euclid’s definition and prove it is equivalent to the more commonly used one. 
 
Euclid’s Definition:  A line is tangent to (or “touches”) a circle at a point P, if the line 
meets the circle at P, but if produced further, does not “cut” the circle. 
[Definition 2, Book III, page 51 of our Green Lion text.] 
 



As often happens with Euclid’s definitions, the problem here is in understanding what it 
means.  I.e. what does “cut” mean?  In my father’s dictionary from 1936, it says one 
meaning of cut is to separate or divide into parts, also to cross, as when “lines cut one 
another”.  It also mentions examples such as “cut a corner” or take a shortcut, in all of 
which cases one does go inside a region by crossing a boundary.  Thus it is plausible 
that Euclid meant the following as his definition of tangent line to a circle. 
 
Definition: A line is tangent to (or “touches”) a circle at a point P, if the line meets the 
circle at P, but does not cross from outside to inside the circle near that point.  
 
Since there are several competing properties here, we will give them numbers.  
Suppose a line L meets a circle at P.  Here are two statements that may or may not be 
true: 

1. The line L does not meet the circle again, i.e. the line L meets the circle only 
once. 

2. The line L does not cross the circle at P, from outside to inside (or vice versa). 
 

Remark: Property 1 is a “global” property of the line and the circle, because it looks at 
every point where they meet.  Property 2 is a “local” property, because it looks only at 
the way they meet near the point P. 
 
Euclid immediately proves there is a connection between tangency and the total number 
of times a line meets a circle, i.e. between properties 1 and 2, but without doing or 
saying so completely explicitly. 
 
 
 
Exercise: 
a. By using the exterior angle theorem and the larger side / larger angle theorem, prove 
that if A is a point off a line M, then the shortest segment joining A to M, is the 
perpendicular from the point A to the line M.   
If X is the point where the perpendicular from A meets the line M, then X is called the 
foot of the perpendicular.   
b. Prove that as we move away from the foot of the perpendicular, the segments joining 
the line M to the point A get longer.  I.e. if Y,Z are also points of M, and if Y is between X 
and Z, then AZ is longer than AY, and AY is longer than AX.   
c. In particular if two points of M are the same distance from A, then the two points are 
on opposite sides of the foot of the perpendicular from A to M. 
 
Here is Euclid’s result. 
Prop.III.2.  If a line L meets a circle in two distinct points P,Q, then every point  of L 
between P and Q lies inside the circle. 
Proof:  If O is the center of the circle, then since OP and OQ are the same length, the 
perpendicular from the center O to the segment PQ must meet the segment PQ at some 



point X which lies nearer to O than either point P or Q.  Thus X is inside the circle.  By 
the large angle/larger side theorem, (or the Pythagorean theorem) as in the exercise 
above, the distance from O to a point of the line through PQ increases as the point 
moves away from X.  Hence all points between X and P and between X and Q lie inside 
the circle, while points of L which lie outside segment PQ, also lie outside the circle. 
QED. 
 
Cor: A line cannot meet a circle at more than two points. 
Proof:  If a line were to meet a circle at three distinct consecutive points P, X, Q, then 
point X would violate the previous result.  I.e. since P and Q are on the circle, the point 
X must be inside the circle and not on it. Hence there cannot be more than two points 
where a line meets a circle. QED. 
 
Note:  Although Euclid did not say so, the proof of III.2 shows that points not in the 
interval PQ, lie wholly outside the circle. 
 
Cor:  A line that meets a circle more than once must cross the circle from outside to 
inside. 
Proof:  By the previous corollary a line that meets a circle more than once must meet it 
exactly twice.  Then by the proof of III.2, the line crosses the circle at both points where 
it meets it. QED. 
 
Cor:  If a line meets a circle but does not cross it, then it meets the circle only once. 
Proof:  This is the contrapositive of the previous corollary, hence is also true.  QED. 
 
This shows that statement 2 above (Euclid’s definition of tangent) implies statement 1 
(the usual definition of tangent).  To complete the proof of equivalence of these 
statements, and show that Euclid’s definition of tangent line is equivalent to the usual 
one, we prove the inverse of the previous corollary. 
 
Lemma: If a line L meets a circle at P, and L crosses from the outside to the inside of 
the circle, then L also meets the circle again. 
Proof:  If the line L passes through the center O of the circle, then the point Q of L, on 
the other side of O, with OP = OQ, is also on the circle, so L does meet the circle twice.  
 
Now assume L does not contain the center of the circle.  If L meets the circle at P and 
crosses into the circle, there is a point say X of the line which lies inside the circle.  That 
point X then is closer to the center O of the circle than is P, so P is not the foot of the 
perpendicular to L from O.  Thus if we drop a perpendicular from O to L, meeting it at Y, 
then OY < OP, so Y is inside the circle.   
 
Look at the right triangle OYP.  If we flip this triangle about the line OY, or equivalently if 
we copy the segment YP onto L, on the other side of Y, we get segment YQ, for some 
point Q of L.  Now triangles OYP and OYQ are congruent right triangles by SAS, so OQ 



equals OP.  Since P is on the circle, and Q is the same distance from O as P is, Q is 
also on the circle, and we have proved that L meets the circle again.  QED. 
 
We have proved that if statement 2 above is false then statement 1 is also false, so by 
contraposition, we have proved that statement 1 implies statement 2.  Since we had 
already proved that statement 2 implies statement 1, we have proved the two are 
equivalent.  Thus it does not matter which definition you use for a tangent line, Euclid’s 
original one, that the line meets but does not cross the circle, or the more common one 
that the line meets the circle only once. 
 
Remark:  Although the two definitions are equivalent for circles, Euclid’s definition 
applies to curves much more general than circles, because Euclid’s definition is “local”, 
as a general definition of tangent must be.  Look at the following picture of a curve that 
goes up then down, then up again. 

 
The horizontal line meets the curve twice, hence is not tangent by the usual definition.  
But if we use Euclid’s definition, we can see that the line is tangent at the left point, 
because it does not cross the curve there.  It is not tangent at the second point because 
it does cross the curve there. Thus in this more general example, Euclid’s definition still 
gives the right answer.  Therefore if we want to use our knowledge of tangent lines in 
new situations, it is valuable to know Euclid’s definition. 
 
Remark: By googling “Euclid’s definition of a tangent line” I found a reference in the 
“Century dictionary and cyclopedia”, prepared by William Dwight Whitney, and Benjamin 
E. Smith, from 1911, where they give Euclid’s definition as we have done.  I.e. they say 
that Euclid defined a tangent as “a line that meeting a circle and not crossing it when 
produced”.  So at least 100 years ago there were people who interpreted Euclid’s 
definition the same as we have done. 
 
Whitney and Smith also point out that this definition fails only at points of “inflection” of a 
curve, [a point where it changes curvature from convex to concave].  Can you see the 
inflection point in the picture above, where the tangent line does cross the curve?  [Hint: 
the tangent line at that special point only meets the curve once.]  For a pdf file on 
tangent lines according to Descartes, which works for curves defined by polynomials, 
see http://www.physicsforums.com/showthread.php?p=2961525, post #6.  The picture 
of the curve above is also reproduced in that file, if it does not appear here. 



 
 
Do tangent lines exist? 
It is not yet clear that tangent lines to circles exist!  I.e. it still is not clear, at least not 
logically, that there are any lines that meet a circle once, or that do not cross a given 
circle.  But Dr.T. has shown us where to look for them.  He has proved that if a line L 
meets a circle with center O at P, but L is not perpendicular to radius OP, then L must 
meet the circle again, hence L is not tangent to the circle.  Let’s repeat his proof here. 
 
Lemma: if a line L meets a circle at P, but L is not perpendicular at P to OP, then L 
must meet the circle again. 
Proof: If L is not perpendicular to OP, then the perpendicular to L from O meets L at 
some other point X.  Now the same construction we made in the proof above, 
constructing a triangle OXQ congruent to triangle OXP, shows that L meets the circle 
again. QED. 
 
Thus if L meets the circle at P but is not perpendicular to OP at P, then L is not tangent 
to the circle. 
 
If we consider the contrapositive of his statement, we get this result. 
Cor: If a line L is tangent at P to a circle with center O, then L is perpendicular to radius 
OP. 
 
It follows that the only possible candidate for a tangent line at a point P on a circle, is the 
line perpendicular at P to radius OP.  In fact our arguments already show this line is a 
tangent, as we explain next. 
 
Lemma: If a line L meets a circle with center O at P, and L is perpendicular to the 
radius OP, then L does not cross the circle at P, hence L is tangent to the circle. 
Proof:  We prove the contrapositive.  If L is not tangent to the circle then L crosses 
inside the circle at P, hence the foot of the perpendicular from O to L is inside the circle 
and not at P.  I.e. if L is not tangent to OP then L is not perpendicular to OP.  Thus the 
contrapositive also holds: if L is perpendicular to OP at P, then L is tangent to the circle 
at P. QED. 
 
Euclid proves the same thing in his amazing Proposition III.16, which we break up into 
several statements. 
Prop.III.16a.  If P is a point on a circle with center O, and L is a line perpendicular to OP 
at P, then L remains (except for the point P) wholly outside the circle. 
Proof: We know by the exercise above that if L is perpendicular to OP at P, then for 
every other point Q on L the segment OQ is longer than OP.  Thus every other point Q 
of L is outside the circle. QED. 
 
Cor (“Porism”): The line perpendicular to radius OP at P is tangent to the circle at P. 



 
Remark:  Euclid says this corollary is obvious (“manifest”), so unfortunately he does not 
give a proof.  If he had done so, we could see more clearly which definition of tangent 
he was really using.  However, since the line L perpendicular to OP at P has been 
shown to remain wholly outside the circle except for the one point P, it follows both that 
it meets the circle only once, and also that it does not cross inside.  So both equivalent 
definitions are satisfied, and it is certainly true that L is tangent there to the circle. 
 
The other part of Euclid’s Prop. III.16 is to me even more remarkable, since it contains 
the germ of the modern definition of a tangent line as a “limit of secants”. I did not know 
that this idea was in Euclid, 2,000 years before the invention of the calculus. 
 
Prop. III.16b.  If P is a point on a circle with center O, and if L is a line perpendicular to 
radius OP at P, then no other line M through P “can be interposed” between L and the 
circle.  I.e. if M is any other line through P, then M meets the circle again at Q ≠ P, and 
the arc between P and Q lies entirely inside the angle between L and M. 
Proof: If M ≠ L, then the perpendicular to M from O meets M at X ≠ P, and X lies inside 
the circle.  By the previous arguments, if Q is the point on M on the other side of X from 
P, with PX = XQ, then OP = OQ, so Q also lies on the circle.  Then by III.2, the arc 
between P and Q lies inside the angle between L and M.  QED. 
 
Remark:  This result says in modern language, that the line L perpendicular to OP at P, 
is a “limit of the secant lines PQ, as QP”.  I.e. for every angle made by lines M and N, 
with vertex P and containing the line L, there is an arc centered at P, such that for every 
point Q in that arc, the secant PQ lies within the given angle.  
 
[Aside: When you study calculus, you will learn this is exactly the “epsilon / delta” proof 
that L is the limit of the secant lines PQ, as QP.  I.e. for every epsilon e>0, there is a 
delta ∂ > 0, such that whenever |Q-P| < ∂, then |PQ – L| < e. 
In plainer language, whenever Q is a point near P (closer than ∂), the secant PQ is near 
the line L (closer than e).] 
 
This definition of tangent line, as a limit of secant lines, is presumably the one given by 
Newton 2,000 years after Euclid, and still used today in calculus.  I have seen it stated 
that Newton re - read Euclid just before giving this definition.  This is a reminder that 
even the greatest geniuses have looked for ideas in the classic works of antiquity. 
 
Euclid also discusses how circles can meet each other.  Some of the results follow 
easily from the proofs of earlier propositions. 
 
Exercise:  Prove two circles can meet at most once on each side of their line of 
centers. (Hint: Use the first proof, i.e. Euclid’s own proof, of SSS congruence.) 
 
Deduce: Cor: Prop.III.10.  A circle cannot cut another circle at more than 2 points. 



 
Euclid also defines two circles to be tangent if they meet but do not “cut” one another, 
and proves: 
Prop.III.12-13: Two circles meet at most twice, and if tangent they meet only once. 
 
In particular it seems clear he is not defining tangency of circles as circles intersecting 
only once, since then he would not have proved they cannot be tangent twice.  This 
argues to me that the word “cut” does not mean “meet again”, but means “cross”. 
 
 
Week 2. Day 2:  Polygons and angles in circles 
 
Some constructions from Book IV we can make 
We quickly surveyed several nice ruler and compass constructions we can make by 
erecting and dropping perpendiculars, and copying segments.  Everyone should be sure 
he/she knows how to: 
 
Inscribe a square in a given circle 
Inscribe a circle in a given square 
Circumscribe a square about a given circle 
Circumscribe a circle about a given square 
Same 4 constructions for circles and regular pentagons,  
regular hexagons, and regular octagons. 
 
Then we discussed circumscribing a circle about any triangle. This used the basic 
construction of a perpendicular bisector of a segment.  I.e. recall we have proved in 
constructions class (see Props. I.9-I.10-I.11) the following result. 
 
Lemma:  If segment AB is the base of an isosceles triangle, then the perpendicular 
bisector of AB passes through the vertex of that triangle.  Conversely, if ABC is a 
triangle whose vertex C lies on the perpendicular bisector of AB, then the triangle is 
isosceles. 
 
Cor: (Prop. III.1) The center of a circle lies on the perpendicular bisector of every 
secant. 
Proof: The center is equidistant from the endpoints of every secant, hence if B,C are 
points on a circle and P is the center, the triangle PBC is isosceles with base BC.  
Hence the perpendicular bisector of the secant BC passes through the center P. QED. 
 
Cor: To construct the center of a circle, either find the perpendicular bisector of any 
secant, and then find the midpoint of the resulting diameter, or find the perpendicular 
bisectors of two non - parallel secants, and see where they meet. 
 



In particular, if all three vertices of a triangle lie on a circle, then the center of the circle 
is at the intersection of the perpendicular bisectors of any two sides. Thus the vertices of 
a triangle all lie on a circle if and only if the three perpendicular bisectors of the sides all 
meet at one point.  (Then we say they “concur”, or come together.) 
 
To show the vertices of a triangle always lie on a circle, we will prove the next result. 
Prop.III.5. The point where the perpendicular bisectors of two sides of a triangle 
intersect, is equidistant from all three sides. 
Proof:  Bisect sides AB and AC in triangle ABC perpendicularly, and assume the 
bisectors meet at P.  Since P is on both bisectors, then by the Lemma above, both 
triangles PAB and PAC are isosceles.  I.e. sides PA = PB, and sides PA = PC.  Thus all 
three sides are equal PA = PB = PC, and P is equidistant from all three vertices A,B,C.  
Hence all three vertices A,B,C lie on the circle with center at P and radius = PA. QED. 
 
Cor: In any triangle, the three perpendicular bisectors of the sides are concurrent, i.e. 
they all meet at one point. 
Proof:  In the previous construction we get a circle centered at P, and all three sides 
AB, AC, BC of the triangle are secants of that circle.  Hence the perpendicular bisectors 
all pass through the center of the circle.  QED. 
 
Prop. III.4 Given any triangle ABC, one can inscribe a circle in it, i.e. there exists a circle 
tangent to all three sides of the triangle. 
Proof:  Imagine this is true.  If the center of the triangle is P, and the circle is tangent to 
the three sides at the points X,Y,Z, then the three radii PX, PY, PZ are equal and 
perpendicular to the various sides.  Assume X is opposite vertex A, Y is opposite B, and 
Z is opposite vertex C.  Connect P up to points X,Y,Z, and also to vertices A,B,C.  This 
forms 6 right triangles all with a vertex at P. 
 
Consider the two triangles with vertex at C.  They have a common side, and each has a 
radius as another side.  Since they are right triangles, by Pythagoras all three sides are 
equal, and the triangles are congruent by SSS.   It follows that the segment PC bisects 
the angle at C, i.e. angle <ACB.  Similarly all three angles of the triangle are bisected by 
the three segments from P. I.e. PA bisects <BAC, and PB bisects <ABC. 
 
It follows that IF our triangle is going to have an inscribed circle, then the center of that 
circle is a point common to all three of the angle bisectors of the triangle.  So for the 
proposition to be true it is necessary for the three angle bisectors to have a common 
point.  Let’s try and prove that always happens. 
 
Start from triangle ABC and let the angle bisectors of angles A and B meet at P.  It can 
be shown P must be inside the triangle, using our separation postulate #8.  It also looks 
to me as if the perpendicular from P to any side, always meets that side between the 
two vertices, and not outside the triangle on the extended line through the vertices.  This 
seems assumed in the picture on page 86 of the Green Lion edition of the Elements. 



 
Label the feet X,Y,Z of the three perpendiculars so that X is opposite angle A, Y is 
opposite angle B, and Z is opposite angle C. Then draw segments PX, PY, PZ, and PA, 
PB, PC, forming 6 right triangles as before.  Now by AAS, triangles PAY and PAZ are 
congruent, so that PY = PZ.  By the same reason triangles PZB and PXB are congruent, 
so that PZ = PX.  Hence all three perpendiculars are equal PX=PY=PZ.  Thus the circle 
centered at P with radius PX, has PX, PY, PZ as radii, and is tangent to all three sides 
of the triangle.  QED. 
 
In particular we have proved the following result. 
Cor: In any triangle, the three angle bisectors all meet at one point. 
 
Remark:  A segment joining a vertex of a triangle to the midpoint of the opposite side is 
called a “median”.  It is true that all three medians of a triangle meet at a common point, 
but the proof I know for Euclidean geometry uses the theory of similarity.  In fact this 
theorem is true also in hyperbolic geometry, and therefore also in neutral geometry.  
Thus there should be a proof that does not use Euclid’s fifth postulate, but I have never 
seen one.  Maybe one of you will find one and show me.  Some notes on concurrence 
theorems is on my web page, class notes, #9 f, http://www.math.uga.edu/~roy/, but not 
this one. 
 
 
Angles in circles 
Another result I did not remember from high school is that all angles subtending the 
same arc of a circle are equal, no matter where their vertices are on the circumference.  
One nice way to show a lot of things are equal, is to show they are all equal to one 
special case.  The only special angle subtending a given arc of a circle is the one with 
its vertex at the center.  Fortunately this one can be used to study the angles with their 
vertices on the circumference, by the next result. 
 
Prop. III.20  The angle with vertex at the center of a circle is double that of any angle 
with vertex on the circumference, if the two angles have the same arc as base. 
Proof: Take an angle less than a straight angle, as Euclid always does. 
 
You will need to fill the details of these proofs.  If you get stuck, look at Euclid’s proofs. 
Case one: One side of the angle with vertex on the circumference, passes through the 
center.  Then the result follows from the isosceles triangle principle and the Euclidean  
exterior angle theorem.  (Exterior angle equals sum of remote interior angles, Prop. I.32, 
in Euclid or I.32.ii in our notes of week one, day 4.) 
 
Case two: If the angle with vertex on the circumference encloses the angle at the 
center, the result follows by addition of two instances of case one. 
[Draw a line from the vertex on the circumference passing through the center and 
extend it to a diameter.  Now you have two angles, both with one side through the 



center, and the original angle is their sum.  Case one applies to each of these 
separately, and then you add the results.] 
 
Case three:  If the center is outside the angle with vertex on the circumference, the 
result follows by subtraction of two instances of case one. 
[Again draw the diameter through the vertex on the circumference.  Once more you 
have two angles both with one side through the center.  The original angle is the 
difference of these angles, so apply case one again to both angles and subtract.] 
QED. 
 
Cor. Prop.III.21. Two angles in the same arc of a circle, with vertices on the 
circumference, are equal. 
Proof: They are both equal to ½ of the angle with vertex at the center and in the same 
arc, so they are equal to each other, if halves of equals are equal.  QED. 
 
Next we want to take the limiting case where the vertex on the circumference comes to 
coincide with one of the endpoints of the base arc.  [If we were in a calculus course, we 
would not need to do this as a separate case.  We would just observe that the angles 
vary continuously as we move the vertex, but they have been constant for every position 
of that vertex.  Hence they must remain constant as the vertex approaches an endpoint 
of the arc.  I.e. the limiting value of a constant function is that same constant.]  Notice 
that as in calculus, and in Euclid’s prop. III.16, in this case one of the sides of the angle, 
being a limit of secants, has become a tangent line. 
 
Prop. III.32.  An angle in the arc AB in a circle, with vertex on the circumference, is 
equal to the angle between the secant AB and the tangent at B to the given arc. 
Proof:  It suffices by Prop. III.20 to prove the angle the tangent makes with the secant is 
again equal to half the angle at the center in the arc AB.  If the center is O, the triangle 
AOB is isosceles and has base angles t and t.  Since the tangent line at B is 
perpendicular to the radius at B, the angle s between the tangent and the secant 
satisfies t+s = right, hence 2t+2s = straight angle.  But the angle u at the center satisfies 
u+2t = straight, since u,t,t are the angles of triangle AOB.  Thus u+2t = 2s+2t, so u = 2s. 
QED. 
 
 
 
Day 3) Geometric algebra and Law of Cosines 
 
Euclid Book II:   
Now we want to do some geometric algebra, adding subtracting and multiplying 
segments, instead of numbers.  We want to do algebra just using geometry.  So our 
letters X and A, B ...  represent line segments rather than numbers.  Then we want to 
add and multiply them, still without using numbers.  So if A and B are segments, we 



define their sum by sticking them end to end, and we say two segments are equal if they 
have the same length, i.e. they are congruent.   
 
We define the product AB of two segments to be a rectangle with base A and height B.  
We say two products are equal if the rectangles have the same content or area, in the 
sense we discussed last week.  I.e. AB = CD if the rectangles AB and CD can be 
decomposed into congruent pieces, possibly after adding some congruent pieces to 
both. 
 
Then we want to know the usual properties of multiplication are true.  To see that AB = 
BA as we expect, i.e. that “commutativity” holds, notice the rectangles AB and BA are 
congruent, by a rotation, hence they have the same content. 
 
The other property we want for our multiplication is “distributivity”.  I.e. multiplication 
“distributes” or “spreads out” over addition.  Thus we want  A(B+C) = AB +AC.   
 
Notice there are two kinds of addition in that formula.  B+C is the sum of two segments, 
where we just lay them end to end.  Addition of two rectangles means considering them 
together as one figure, so we lay them end to end, or if they don’t line up perfectly, we 
just make sure they don’t overlap.  
 
Thus distributivity, i.e. A(B+C) = AB + AC, says that the rectangle with one side A, and 
the other side B+C, can be decomposed into two rectangles, one AxB and one AxC.  
This is easy to see from a picture.  This is Prop. II.1.  Moreover it seems to me that 
Props II.2 and II.3 are special cases of Prop. I.1, and thus really do not need separate 
proofs. 
 
We skipped this part of Book I, but it is shown in Props. I.42-45, how to start from any 
polygon and find a rectangle of the same content, and having one given side.  Thus to 
compare the size of two rectangles (or any two polygons), you can change them into 
two other rectangles with one congruent side, and then check whether the other sides 
are also congruent.  I.e. given rectangles AB and CD, you can always change them into 
equal rectangles of form XY and XZ.  Then they are equal if and only if Y and Z are 
congruent segments. 
 
So it is possible to decide by ruler and compass construction whether two rectangles 
have the same area, without using numbers to measure that area.  Notice this is a 
version of the cancellation property.  Since XY = XZ is equivalent to X(Y-Z) = 0, this 
says that a product is zero only if at least one of the factors is zero.  This is another 
property we like to have for multiplication. 
 
We will prove Prop. II.14 below which tells us how to construct a square equal to a given 
rectangle.  This gives us another way to compare the area of two rectangles, since once 
they are made square, the larger one is the one with the larger side. 



Now once we have commutativity and distributivity, it seems that all Euclid’s 
propositions II.1 through II.10 follow just by logic from those two properties.  You have to 
be a little careful, because all letters refer to segments, and segments are always of 
positive length, so you can only subtract a smaller segment from a larger one.  This 
makes a small inconvenience when we are doing algebra, because we have not 
introduced negative segments.   
 
Still I feel there is basically nothing new in any of the first 10 propositions, they are just 
elaborate versions of AB = BA, and A(B+C) = AB + AC.  It does help in some cases to 
look at the geometric proofs though, because some of them are so striking, that they 
make the algebra more obvious.  This is the idea behind using aids like omnifix cubes in 
instruction.  You can get your hands physically on the geometry more than on the 
algebra, and this makes it more memorable for many of us. 
 
Propositions II.11 – II. 14 are more interesting, because they combine the algebraic 
rules developed in the earlier propositions with Pythagoras, to solve interesting 
quadratic equations.  We have already discussed II.11, the equation whose solution 
gives the “golden ratio” used to construct a pentagon. 
 
To be able to compute algebraically, and not have to draw the pictures every time, we 
want to learn a couple of useful formulas.  You have seen these in algebra, and they 
also hold here, because they follow logically from the same rules that hold in algebra. 
 
1) (Prop. II.4) (A+B)^2 = A^2 + 2AB + B^2. 
This says the square with sides A+B, can be decomposed into four pieces, an A-square, 
a B-square, and two AxB rectangles.  

proof:  Look at this picture. 
 

QED. 
 
Remark: I was a senior in college when I first saw this picture, in a class with Professor 
Jerome Bruner, famous psychologist of learning.  I was astonished it was so simple.   
 
Proving it however is also easy without any pictures, just as a logical consequence of 
the two rules we have discussed.  To see that, notice that commutativity applies to any 



product of segments.  Thus (  ).[ {  } + <   >] = (  ){  } + (  )<   >, is true for any segments 
we put inside the various brackets.  So we can put (A+B), and {A}, and <B>.  Then we 
have (without keeping up the fancy bracket shapes):(A+B)(A+B) = (A+B)(A) + (A+B)(B), 
since we always expand on the right hand bracket. 
 
Then by commutativity this equals A(A+B) + B(A+B), and by distributivity again this 
equals A^2 + AB + BA + B^2 = A^2 + AB +AB + B^2, by commutativity again, and this 
equals A^2 + 2AB + B^2. QED. 
 
Which proof is clearer to you, the algebraic one or the geometric one? 
 
Here’s another fact we will use a lot. 
2)(Prop. II.5).  (X+Y)(X-Y) = X^2 -Y^2.   
This is not quite as obvious to me.  Since we don’t have negative segments, we cannot 
expand it algebraically as easily as the last one, because we don’t know what (X) times 
(–Y) means.  Geometrically, Euclid’s picture on page 40 of the Elements does not speak 
to me as eloquently as the picture for II.4 either. 
 
However, it turns out to be algebraically the same as the previous one. If we assume Y 
is shorter than X, and call A = Y, and B = X-Y, then we have A+B = X. 
Then X^2 = (A+B)^2 = A^2 + 2AB + B^2 =  Y^2 + 2 Y[X-Y] + [X-Y]^2.   
 
Now use distributivity to factor out [X-Y] from the last two terms and get 
 Y^2 + (2Y+[X-Y])[X-Y] =  Y^2 + (X+Y)[X-Y].   
 
Then since X^2 = Y^2 + (X+Y)(X-Y), we get X^2-Y^2 = (X+Y)(X-Y). QED. 
 
To see it geometrically, make an X square and divide both sides into Y and (X-Y).  Then 
it is easy to see that within this X square we have an Xx(X-Y) rectangle and a Yx(X-Y) 
rectangle, which together make an (X+Y)x(X-Y) rectangle, that fills up the X square, 
except for a Y square.  Thus (X+Y)(X-Y) = X^2 –Y^2. 
 
Euclid’s construction also shows that any two segments can be written as X+Y and X-Y.  
I.e. he takes any segment and divides it into two pieces U,V in any way at all.  Then he 
also divides the same original segment in half, and calls half of it X.  Thus U+V = 2X.  
Then the longer piece, say U, is more than half, so U = X+Y, for some positive length 
segment Y.  Now Y has been added onto X to make U, and Y has also been taken away 
from the other half X, so what remains is V = X-Y.  Thus UV = (X+Y)(X-Y). 
 
This shows how to write any rectangle as a difference of two squares.  It also shows 
how to write any odd integer as a difference of the squares of two integers.  E.g. if we 
write 19 as 1(19), and take half of the sum of the factors 1 and 19, getting 10, we have 1 
= 10-9 and 19 = 10+9, and thus 19 = 10^2 - 9^2 = 100-81.  (Why do we need the 
number to be odd?)  Can you write 11 as a difference of two squares? Can you 



construct a right triangle with one side equal to sqrt(11)?  What are the other side 
lengths?  How about a right triangle with a leg = sqrt(39)? Or sqrt(105)? Or sqrt(171)? 
 
This ability to take square roots geometrically allows us to transform any rectangle into a 
square of equal area. 
Prop. II.14.  If A,B are any two segments, one can construct a segment X such that AB 
= X^2. 
Proof: Euclid uses his trick of writing any product as a difference of two squares, and 
then applies Pythagoras.  I.e. lay the segments A,B end to end to obtain one segment 
PQ of length A+B, divided at E, and bisect that segment at O.  Let half of PQ be called 
R, and construct a semi circle of radius R on segment PQ.   
 
Erect a perpendicular at E, the point dividing A from B on PQ, meeting the 
circumference of the semi circle at F, and call this perpendicular EF = X. 
Denote the segment OE by C, so that A = PE = R-C, and B = EQ = R+C.  Then AB = 
(R-)(R+C) = R^2 –C^2 = X^2, by Pythagoras applied to the right triangle OEX. QED. 
 
 

Law of Cosines 
Pythagoras says the square on the side opposite a right angle “equals” the two squares 
on the sides containing the angle.  If the angle is acute, the square on the side opposite 
it is smaller than the two squares on the sides containing it, and if obtuse the square it is 
greater.  The law of cosines tells exactly how much less or how much greater; in 
particular it says the discrepancy is twice the area of a certain rectangle.  These are 
propositions 12-13, Book II of Euclid.  He uses the geometric algebra we have 
discussed to do this.  I never knew this was in Euclid either. 
 
Prop. II.12 (Law of cosines, obtuse case): Let ABC be a triangle on the base BC, with 
obtuse angle at C, and vertex at A.  Drop a perpendicular from A to the line extending 
base BC, meeting it at X, outside segment BC.   
Then (AB)^2 = (AC)^2 + (BC)^2 + 2 (BC)(CX). 
 

 
  
Proof: By Pythagoras applied to right triangle AXB,  we have (AB)^2 = (AX)^2 + (BX)^2.  
From IV.4, this equals (AX)^2 + (CX)^2 + (BC)^2 + 2 (BC)(CX).  By Pythagoras applied 
to triangle AXC, this equals (AC)^2 + (BC)^2 + 2 (BC)(CX). QED. 
 
Exercise: Prove: 
Prop. II.13: (Law of cosines, acute case): Let triangle ABC on base BC have an acute 
angle at C, and vertex A.  Drop a perpendicular from A to base BC, and assume it 



meets the base at X, between B and C. 
Then (AB)^2 = (AC)^2 + (BC)^2 - 2 (BC)(CX). 

 
 
Remarks: What does this theorem have to do with cosines?  If you recall the definition 
of the cosine of angle <C in the picture for the acute case above, cos(<C) = |XC|/|AC|, 
the ratio of the numerical lengths of the two sides.  Hence cos(<C).(AC) = XC, an 
equality of segments.  Substituting this into Euclid’s formula above gives us  
(AB)^2 = (AC)^2 + (BC)^2 - 2 (AC)(BC).cos(<C), and this is the usual law of cosines in 
trigonometry.  It also works for the obtuse case, since the cosine of an obtuse angle is 
negative, so the minus signs cancel and give us the formula in II.12 above. 
 
 
 
 
 
Week two, Day 4)   Theory of similar triangles 
 
Now we are ready to prove the result that underlies our theory of similarity.  This is 
sometimes called the “power of the point”. 
 
Constancy of products in secants,  
Constancy of products for secants through a fixed point interior to a circle. 
Prop.III.35.  Given a point in a circle, if a secant be drawn through that point, the 
product of the two segments into which it is divided at that point is always the same. 
Proof:  It suffices to show every such product equals that obtained from the line through 
the center.  So let P be the point and O be the center and assume P ≠ O.  (Exercise 
what if P=O?).  Drop a perpendicular of length u from O to the secant dividing it at Q into 
two equal halves each of length s.  If |QP| = b, then the secant is divided at P into 
segments of lengths (s+b) and (s-b). 
 
On the other hand the diameter through P is bisected at O, and if |OP| = a, this diameter 
is divided at P into segments of lengths (R+a)  and (R-a) where R = radius of the circle. 
 
So we want to show that (s+b)(s-b) = (R+a)(R-a).  Looking at the right triangle OPQ, 
Pythagoras gives: a^2 = u^2 + b^2.  
 
If the secant meets the circle at X and Y, then looking at right triangle OQY, Pythagoras 
gives us R^2 = s^2 + u^2.   
 



Subtracting these gives R^2 – a^2 = s^2-b^2.  i.e. (R+a)(R-a) = (s+b)(s-b).  QED. 
 
Summary:  In a circle of radius R and center O, if we choose a point P inside the circle, 
if A = segment OP, then any secant passing through the point P will be divided into two 
segments whose product is a rectangle equal in area to the difference of the two 
squares R^2-A^2. 
 
If we were using numbers to measure lengths, then the product of the lengths of the two 
parts of a secant through is always equal to r^2-a^2, where r is the length of the radius 
and a is the distance of P from the center.  This is the usual statement in books. 
 
 
Application to similar triangles: We say a correspondence between two triangles is a 
“similarity” if corresponding angles are equal.  If there is a similarity between them we 
call the triangles “similar”.  
 
If we draw two secants intersecting at a point P inside a circle, and connect up the 4 
points A,B,X,Y, where the secants meet the circumference, we obtain two similar 
triangles: APX, and YPB, by Proposition III.20 on constancy of angles.  For these 
triangles we have proved that (XP)(YP) = (AP)(BP), where this is the product of 
segments we have defined above.  I.e. this equation means the rectangles formed by 
these segments have equal areas in the sense of congruent decompositions. 
 
If we define the segment ratios (XP)/(AP) = (BP)/(YP) to be equal if and only if the 
rectangles (XP)(YP) = (AP)(BP) are equal, a perfectly natural definition by “cross 
multiplication”, then we can say at least that those similar triangles formed by two 
intersecting secants in a circle, have corresponding sides in the same ratio. 
 
If we were measuring side lengths and areas by numbers, then we have proved that 
 |XP| |YP| = |AP| |BP|, where absolute values denotes length of a segment.  If we divide 
by |YP|.|AP|, this says that |XP|/|AP| = |BP|/|YP|, and we get the usual numerical 
similarity relation of equal ratios for similar triangles. 
 
We claim that all similar triangles can be formed by two intersecting secants in some 
circle.  In fact if we have any two similar triangles, in the sense of having corresponding 
angles equal, and we arrange them so that two equal angles form vertical angles, and 
the other two pairs of non corresponding sides are arranged as collinear, then the circle 
that contains three of the vertices, will also contain the fourth vertex, or else the principle 
of constancy of angles would be violated.  Thus all similar triangles occur in a circle like 
this, and satisfy the similarity relation. 
 
In particular we can develop the theory of similarity of triangles without numbers. 
 



[This theory of similar triangles differs from that in Euclid.  I was trying to present 
similarity without spending as much time as Euclid does to prove Prop. VI.2, since our 
course is so short.  Then I noticed one can derive it from Prop. III.35.  So this theory 
was created especially for this epsilon camp class.  This theory is also more general 
than Euclid’s because it does not depend on approximating ratios by rational ratios.  
Indeed Euclid’s theory requires another missing axiom called Archimedes axiom, which 
says that given three points A,B,C on a line, we can lay off copies of segment AB end to 
end, until some copy goes past the point C. This epsilon camp theory of similarity, unlike 
Euclid’s own theory, works without that axiom, and proves similarity in non Archimedean 
Euclidean geometries.] 
 
Remark:  Now that we have similarity we could go backwards and use it to prove 
Pythagoras. Many people know this proof, which may have preceded Euclid’s. 
 
Similarity proof of Pythagoras 
I.e. if we have a right triangle ABC with sides a,b,c, and drop a perpendicular from 
vertex C to side AB dividing it at E into pieces of lengths x and y, we have three similar 
triangles ABC, ACE, and CBE.  If |AE| = x, and |BE| = y, then x+y = c, and c/a = a/y, and 
c/b = b/x.  Thus a^2 = cy and b^2 = cx, so a^2 + b^2 = cx + cy = c(x+y) = c^2.  QED. 
 
Of course this reasoning is circular, since we have used Pythagoras to prove the theory 
of similarity.  There is also a very easy, but equally circular, argument for Prop. III.35 
using similarity. 
 
Exercise:  Assume the theory of similarity for triangles and give a quick proof of III.35, 
the constancy of products, or the “power of the point”. 
 
Exercise: Give an easy (and non circular) proof of Prop. II.14, by showing it is a special 
case of Prop. III.35. 
 
Exercise: Prove a generalized Pythagorean theorem, in which the polygons on the 
sides of the triangle are equilateral triangles.  See Prop. VI.31 for a still more general 
version, where the figures on the sides are any similar figures at all. 
 
Remarks on circularity of reasoning:  Circularity occurs when something is used to 
prove another thing, and then the opposite is also done, with neither of them being 
rather proved or assumed beforehand.  Circularity can thus be avoided in two ways: 
either prove one of them legitimately from principles already known, or simply assume 
one of them as a postulate.   
 
For example, in Birkhoff’s system he takes a strong version of similarity as a postulate 
right at the beginning.  This makes his system of geometry very efficient, but he has 
given himself a very powerful tool from the start, which may not be very intuitive to some 
of us.  In Harold Jacobs’ book on the other hand, he assumes the theory of area as a 



postulate. Then he gives Euclid’s proof of similarity using area.  Thus in both cases 
there is no circularity of reasoning.  Hilbert and Hartshorne, in their books listed under 
suggested reading on the epsilon camp student forum, develop theories of segment 
addition and multiplication different from ours, then base the theory of similarity on their 
segment arithmetic, and finally base the theory of area on their similarity theories.  
Therefore these approaches are also not circular, and moreover they use very few 
axioms. 
 
It is only when we try to prove area makes sense using similarity, and then try later to 
prove similarity makes sense using area, that circularity occurs.  If we use area to prove 
similarity makes sense without either assuming area as a postulate or proving the 
needed properties of area, perhaps it is more accurate to say a logical “gap” has 
occurred, rather than circular reasoning.   
 
The moral is, to be clear and complete, one should always either say what one is 
assuming, or else show it does not need to be assumed by proving it from earlier 
principles which have been stated. 
 
These remarks are directed at someone who wants to understand the logical structure 
of the subject and to appreciate the attempts by mathematicians beginning with Euclid, 
to render this structure flawless and beautiful.  Preparing to compete in exams is 
different.  Then we want the quickest way to solve every problem.  In contests we 
usually take all of mathematics essentially as postulates, and try to use them to solve 
problems we have not seen before.  Therefore a very clever person can do well in a 
contest simply by knowing the statements of theorems.  A mathematician however 
always wants to know the proofs.  You are potential mathematicians, so these notes are 
written for you from that perspective.  It is my opinion however that they will also help 
you in contests, by deepening your understanding of what to use in various situations. 
 
Exercise: Give an easy proof of Prop. II.14, by showing it is a special case of 
Prop. III.35. 
 
 
 
 
Day 5: Euclid’s proof for the construction of a regular pentagon 
As we learned yesterday in Dr.T’s class, the only primes p for which one can construct 
regular p - gons, are the Fermat primes, i.e. those primes of form 2^(2^n) + 1.  Moreover 
there are only 5 such primes known, F0 = 3, F1 = 5, F2 = 17, F3 = 257, and F4 = 
65,537.  Among these, so far we only know how to construct a regular 3-gon, or 
equilateral triangle.  We have stated how to construct a regular 5 - gon or pentagon, but 
have not seen why it works.  We do that today.  At the end we will try to say something 
about why only Fermat prime p-gons are constructible. 
 



Interestingly, the proof of Prop. IV.10 justifying the construction of a regular pentagon, 
uses variations of the same two results we used yesterday to prove Prop. VI.2 about 
similar triangles.  Namely we again look at constancy of angles Prop.III.32, and 
constancy of products Prop. III.36-37, the “power of the point”.  One difference today is 
we have similarity theory and we can we can use it to make some proofs easier.  First 
we do the tangential case of constancy of angles. 
 
Prop.III.32.  Let A,B be two points on a circle defining an arc less than or equal to half a 
circle.  If C is any point on the ray tangent to the circle at A and pointing along the arc 
AB, and P is any point outside the arc AB, then the angles <APB and <CAB are equal. 
Proof:  Exercise:  Hint: by Prop. III.21, it suffices to prove it when AP passes through 
the center of the circle.  Try this case yourself before reading Euclid’s proof. 
 
Remark:  If we think in terms of limits as they do in calculus, let the point P approach 
the point A as a limit.  Then the secant PB approaches the secant AB, and the ray PA 
approaches the tangent ray AC at A.  Since Prop.III.21 implies the angle between the 
rays PA and PB remains constant as P approaches A, it seems evident (by “continuity”) 
that the angle is still the same in the limit, i.e. that the angle between the secant AB and 
the ray AC is still the same angle.  [Advice: This type of thinking, i.e. the idea of things 
changing continuously as they move, can sometimes help you guess the answer to hard 
problems.] 
 
Next we look at constancy of products, or the power of the point, when the point is 
outside the circle. 
 
Exercise (Prop. III.17):  Show how to construct a right triangle, given the hypotenuse 
and one side.  Use this method to construct a tangent to a circle from a given point 
outside the circle. 
 
Prop. III. 36.  Let there be given a circle of radius R and a point P outside the circle.  
Draw a segment from P to cut the circle at A and again at B.  Then draw a segment 
from P meeting the circle tangentially at one point C.  Then (PA)(PB) = (PC)^2, [in terms 
of equality of areas of rectangles as usual, via congruent decompositions]. 
Proof: This is pretty much like the argument yesterday for III.35 using Pythagoras as in 
Euclid, but it is even easier using similarity, so we use similarity. 
 
Look at the triangles PBC and PCA, and note that they share the angle at P, and that 
angles <PBC and <PCA are equal by Prop. III.32.  Therefore these triangles are similar, 
so corresponding sides are in the same ratios.  Hence (PA)/(PC) = (PC)(PB), and 
therefore (PA)(PB) = (PC)^2.  QED.   
 
Cor: If P is a point outside a circle and we draw two segments from P to the circle, the 
first meeting it at A and then again at B, and the second one meeting the circle at C and 
then at D, then we have (PA)(PB) = (PC)(PD). 



Proof:  By III.36, both products equal (PE)^2, where PE is tangent to the circle at E, 
hence they are equal to each other. QED. 
 
The equation in III.36 gives us a new way to recognize the tangent to a circle, because 
the converse is also true. 
 
Prop. III.37.  Let P be a point outside a circle, and draw a segment PB from P meeting 
the circle first at A and then again at B.  Draw a second segment from P to a point C on 
the circle.  If (PA)(PB) = (PC)^2 then segment PC is tangent to the circle at C. 
Proof:  If not and the segment PC meets the circle again at D ≠ C, then the right side of 
this equation would equal (PC)(PD) ≠ (PC)^2.  Thus the segment meets the circle only 
once, at C, hence is tangent there.  QED. 
 
Remarks:  To see how this formula for the products relates to the previous case when 
the point was inside the circle, look at the picture as the point P moves outside the 
circle, and you will see that the two portions of the secant change into the whole 
segment and the portion of it outside the circle.  So this result is a “continuous 
extension” of the previous case.   
The two formulas can be stated in a unified way as follows.  Let R be the radius of the 
circle and let S be the distance from P to the center, and let A,B be the two points where 
the segment meets the circle.  Then the two theorems Props.(III.35-36) together say 
that for every segment, the product (PA)(PB) always equals |R^2-S^2|.  Some people 
prefer to focus on the number S^2 – R^2, without the absolute value, since then you can 
tell whether the point P is outside or inside the circle according to whether this number 
is positive or negative. 
 
Now we can give Euclid’s proof that his regular pentagon construction works.  It suffices 
to construct a regular decagon. 
Prop.IV.11: Let X be a solution of the quadratic equation X^2 = R(R-X).  Then X is the 
side of regular decagon in a circle of radius R. 
Proof: If we look at a regular decagon inscribed in a circle, and draw segments 
connecting every vertex to the center, we get 10 congruent isosceles triangles.  If we 
could construct just one of these triangles, we could make our decagon, by placing them 
together. 
 
Since there are 10 triangles whose central angles combine to make a full circle, each 
central angle must equal 1/5 of a straight angle.  Since they are also isosceles the base 
angles are equal, and since the angles of a triangle add to a straight angle, the base 
angles must each be 2/5 of a straight angle.  Therefore it suffices to prove the following 
statement. 
 
Prop.IV.10: If X < (less than) R are segments such that X^2 = R(R-X), then in the 
isosceles triangle with base X and sides R, the base angles are both equal to twice the 
vertex angle. 



Proof: Let the triangle be ABC with vertex at A and base BC. 
Copy a segment AD on side AC, equal to the base BC = X.  Draw the segment BD 
dividing the triangle into two triangles, ABD and BDC.  Euclid will prove both of these 
triangles are isosceles.  (Do you see why that will prove the proposition?) 
Let the vertex angle at A be a, let angle <DBC = b, and let angle <DBA = c.  Then by the 
Euclidean exterior angle theorem angle <BDC = a+c, and since triangle ABC is 
isosceles angle <BCA = b+c. 
 
Next Euclid makes a brilliant argument that angle angles a and b are equal as follows.  
Draw a circle through the three points ABD.  Then C is a point outside the circle and we 
have two segments from C meeting the circle.  One of them is CA which meets it at D 
and A, and the other is segment CB which meets it at least at B.  Euclid observes that 
CB is actually tangent to the circle, because the equation X^2 = R(R-X) is equivalent to 
the product equation (CD)(CA) = (CB)^2.  Isn’t that amazing!? 
 
Since by Prop.III.37 segment (CB) is tangent to the circle, it follows from Prop.III.32 that 
angles <CDB and <BAC are equal.  That is, a = b.  Hence triangle BDC is isosceles, 
and thus side BD = BC = X.  
 
But also side AD = X by construction, so triangle ABD is also isosceles, hence angles 
<BAC = a, and <ABD = c are also equal.  Hence a=b=c, and the original triangle ABC 
has both base angles equal to 2a, twice the vertex angle.  QED. 
   
Remarks:  While giving this argument I noticed that the cleverest part, namely using the 
extra circle, and propositions III.32 and III.37 to show that angles a and b are equal, can 
be finessed by using similarity, which Euclid did not have available in Book IV.  I could 
not bear to omit Euclid’s beautiful tour de force argument above, but now I will give the 
easier similarity proof, because you are more likely to be able to use this idea again 
some time.  I.e. Euclid’s proof is more like a trick that you use only once, and this one is 
more like a method, that as the joke goes, you should be able to use at least twice.  
[Mathematician’s joke: “A method is a trick you use twice.”] 
 
Prop.IV.10: If X < (less than) R are segments such that X^2 = R(R-X), then in the 
isosceles triangle with base X and sides R, the base angles are both equal to twice the 
vertex angle. 
Alternate proof:  Again draw the same triangles and label the angles as before, a,b,c, 
and we want to prove that a = b = c.  Oops, I guess we need a slight variation of the 
similarity principle we proved.   
 
SAS similarity:  If two triangles have one angle equal, and if the sides adjacent to that 
angle are in the same proportion, then the triangles are similar with sides corresponding 
in that order.   
This is an easy corollary and converse to our version of Prop.VI.2, as can be seen by 
arranging the triangles as in the picture on page 125, and let’s assume it. 



[Proof sketch:  If two triangles have one angle equal we can move them until they have 
that angle in common, as with triangles ADE and ABC in Euclid page 125.  Then we 
have proved that if the other two angles are also equal, then the sides are in the same 
ratio, so (AD)/(AB) = (AE)/(AC).  Then look at the picture and imagine what happens if 
we move point E further down the side toward C.  Not only does the angle <AED get 
smaller, but the ratio of sides (AE)/(AC) gets larger.  So if the angles <AED and <ACB 
are NOT equal, then those sides AE and AC are no longer in the same ratio as sides 
AD and AB.  The converse of this says that the triangles have angle A in common, and 
if those two pairs of adjacent sides are in the same ratio, i.e. if (AD)/(AB) = (AE)/(AC), 
then the two base angles are also equal and the triangles are similar.  QED.] 
 
OK let’s use it to prove Euclid’s proposition IV.10. 
 
Look at a picture of our triangles in Prop.IV.10 (with our labeling, not Euclid’s).  I.e. let 
the triangle be ABC with vertex at A and base BC, and sides AB and AC both = R, and 
base BC = X, where X^2 = R(R-X).  Copy a segment AD on side AC, equal to the base 
BC = X.  Draw the segment BD dividing the triangle into two triangles, ABD and BDC.  
Euclid will prove both of these triangles are isosceles.  Label the angles as <BAC = a, 
angle <DBC = b, and angle <ABD = c.  We claim a=b=c.  First we will show a=b. 
 
Notice that triangles ABC and BDC share an angle at C.  Moreover the adjacent sides 
are in the ratios (R-X)/(X) and (X/R).  But these ratios are equal by hypothesis since X^2 
= R(R-X), so those triangles are similar in that order. 
 
Hence angle b = <DBC = <BAC = a.  Then as before, triangle DBC is isosceles so DB = 
X.  Then ABD is isosceles since DB = AD = X, so a = c.  Hence a = b = c, and we are 
done.  I.e. triangle ABC has angles a, 2a, and 2a.  Thus 5a = straight angle, so the 
vertex angle a = 1/5 of a straight angle.  QED. 
 
Remarks on impossible constructions: 
I want to say something about why the only regular p-gons that can be constructed with 
prime p, are for the Fermat primes p = 2^(2^n) + 1, or equivalently p – 1 = 2^(2^n).  This 
discussion will necessarily be very abbreviated (but longer than the one in class).  First 
of all, note that a number of form 2^(nm)+1 where m is odd is never prime, because it 
equals (2^n)^m + 1, and any number of form x^m+1 where m is odd can be factored. 
 
E.g., you probably know the basic example of x^3+1 = (x+1)(x^2+x+1).  Then x^5 +1 = 
(x+1)(x^4+x^3+x^2+x+1), and so on….  Wait a minute, why am I going to so much 
trouble?  Probably you know the factor theorem from algebra implies that a polynomial 
f(x) is divisible by x+1 if and only if f(-1) = 0.  Since plugging x = -1 into x^m + 1 does 
give zero when m is odd, x+1 always divides x^m+1 for m odd.  So 2^n +1 always 
divides (2^n)^m + 1 when m is odd, by taking x = 2^n. 
 



Thus if a prime has form 2^n + 1, then it has form 2^(2^n) + 1.  Hence it suffices to show 
that every constructible prime must have form 2^n + 1. 
 
Theorem:  If p is a constructible prime, then it has form p = 2^n+1. 
Description of proof: Notice that every construction involves finding points by 
intersecting lines and circles.  This is the key to understanding what constructions are 
possible.   
 
Assume we are in an Archimedean geometry, i.e. Euclid’s geometry plus the extra 
axiom of Archimedes, that says any segment can be laid off repeatedly until it reaches 
any other point.  Then we can introduce real numbers as coordinates, by introducing a 
pair of perpendicular axes in the plane.  Then every point of the plane can be described 
by a pair of real coordinates (x,y).  Conversely we may assume that every pair of real 
coordinates (x,y) represents a point of the plane, but they need not all be constructible.  
We want to examine which ones among the many points of the plane are constructible 
by ruler and compass. 
 
We start from only two points (0,0) and (1,0), and ask what points can be constructed 
from these.  E.g. we can lay off as many copies of these as we wish along the x axis, so 
we get all points of form (n,m) where n,m are integers.  Then we can also subdivide the 
interval between (0,0) and (1,0) into n equal parts for every natural number n, and then 
lay off copies of those, so we also get all rational points on the x axis of form (n/m, 0) 
where n,m, are integers, and m ≠ 0.   
 
Since we can construct the perpendicular to the x axis we also get the y axis, and then 
we can lay off rational points on the y axis.  Now we can construct perpendiculars to 
both x and y axes and intersect them, so we also get all “rational points” of the plane, 
i.e. all points of form (n/m, a/b), with a,b,n,m, integers and mb ≠ 0.   What else can we 
get? 
 
Well we also get points that arise from intersecting lines determined by two rational 
points, with other such lines, or with circles with rational centers and a rational point on 
the circumference, or two such circles. 
 
Now intersecting sets defined by equations means solving the equations 
simultaneously, so we want to know what kind of numbers occur as simultaneous 
solutions of equations of lines and circles.  In fact all we need to know is the degree of 
the equations.  Solving two linear equations with rational coefficients just gives rational 
solutions, so intersecting such rational lines does not give any new points.  Moreover 
intersecting two rational circles gives two points which are also obtained by intersecting 
one circle with a rational line (subtract the equation for the two circles to get the 
equation of the line).  So we look at points obtained by intersecting rational lines and 
rational circles. 
 



An equation for a line through two rational points looks like ax+by = c, where a,b,c, are 
rational numbers.  An equation for a circle determined by a rational center and rational 
point on its circumference looks like (x-u)^2 + (y-v)^2 = w^2, where u,v,w, are rational  
numbers.  To solve ax+by = c, and (x-u)^2 + (y-v)^2 = w^2, simultaneously, we solve 
the linear equation for y, getting: by = c – ax, then y = c/b – ax/b, and substitute this for y 
in the quadratic equation.  The result is some complicated quadratic equation in x, 
Maybe (x-u)^2 + ([c/b – ax/b] – v)^2 = w^2.  I don’t care what it is exactly, as I am only 
interested in its degree, or the fact that it is quadratic, i.e. of degree two.  We call 
solutions of quadratic equations with rational coefficients “quadratic” numbers. 
 
Conversely we know how to use Pythagoras to solve quadratic equations whose 
coefficients are segments, or numbers, that we have already constructed.  So we can 
construct points in the plane whose coefficients are solutions of quadratic equations with 
rational coefficients, and any algebraic combination of those numbers.  E.g. we can 
construct the point (sqrt(2)-sqrt(5), 1+sqrt(7/3)).  Similarly we can construct all quadratic 
points, i.e. points whose coefficients are quadratic numbers.  These quadratic points are 
the points that only require one “quadratic step” to construct, i.e. one use of the 
compass. 
 
What next?  Well once we have those quadratic guys we can intersect more lines and 
circles.  So now we are solving quadratic equations whose coefficients are quadratic 
numbers. We call these biquadratic numbers.  Thus we can construct all biquadratic 
points   I claim the solution of such an equation is also the solution of an equation of 
degree 4, but with rational coefficients.  I.e. we claim all biquadratic numbers are also 
quartic numbers, or degree 4 numbers. 
 
E.g. if we have an equation like  X^2 – sqrt(3).X + 1 = 0, with quadratic coefficients, we 
can rewrite it as X^2 + 1 = sqrt(3)X, and square both sides, to get (X^2+1)^2 = 3X^2, or 
X^4 + 2XC^2 + 1 = 3X^2, which becomes X^4 –X^2 + 1 = 0.  Thus our number X 
becomes a solution of a 4th degree equation with rational coefficients.  I general every 
biquadratic number is a quartic number.  The idea is that biquadratic numbers are those 
that only require two quadratic steps to construct, or two uses of the compass.  As in 
this example, they are all quartic numbers, i.e. they satisfy degree 4 equations with 
rational coefficients.  Now what about points that require three quadratic steps to 
construct? 
 
 
If we have X^2 – 2^(1/4)X -3 = 0, where the coefficient 2^(1/4) is biquadratic hence 
quartic, we get X^2 -3 = 2^(1/4)X, and raising both sides to the 4th power gives (X^2-
3)^4 = 2X^4, which is an equation of degree 8 with rational coefficients.  So the 
triquadratic number X, which requires three uses of the compass, is of degree 8, or an 
“octic” number. 
 



I don’t know how to make this entirely clear, but as we go on what happens is that the 
points we get are solutions of equations of degree 2,4,8,16,32,….., i.e. degree 2^n, with 
rational coefficients.  And that is all we can get.  More precisely, a point that can be 
constructed in n steps satisfies an equation with rational coefficients, and has degree 
dividing 2^n, (since steps not using the compass have degree one).   It follows that a 
point (x,y) cannot be constructed unless its coefficients are solutions of an equation of 
some degree 2^k with rational coefficients. 
 
Now this applies also to complex numbers x+iy corresponding to our points.  I.e, if (x,y) 
is a constructible point, then the complex number z = x+iy must satisfy an equation of 
degree 2^n for some n.   But the first vertex on the unit circle of a regular p - gon, after 
the point (1,0), is exactly “1/p^ th” of the way around the circle.  Since multiplying 
complex numbers adds their angles and multiplies their lengths, it is a complex solution 
of the equation z^p – 1 = 0.   
 
Now this equation factors as z^p – 1 = (z-1)(z^(p-1) +….+z + 1) = 0, and since z=1 is 
the only solution of the first factor, the complex number we want is a solution of the 
second factor, which has degree p-1.  For that point, which gives the first vertex of the 
regular p-gon, to be constructible, we must have p-1 = 2^n, i.e. p = 2^n+1.  Then of 
course since p is prime, we have seen it must have form 2^(2^k) + 1, i.e. it must be a 
Fermat prime. 
 
These ideas are usually taught in a college abstract algebra course as an application of 
linear algebra.  One possible source is the book Abstract algebra, a geometric 
approach, by Theodore Shifrin, or my math 4000 notes #4f, the last couple lectures, on 
my web page at UGA. http://www.math.uga.edu/~roy/ 
 
 
 
Day six), Cavalieri principle, Volume of pyramid, cone, sphere, Surface area of 
sphere 
To day I want to describe a progression from Euclid to Archimedes to Newton and 
Barrow, in the theory of area and volume. 
 
Fundamental principle: same base and height implies same area or volume 
Recall the basic result Prop. I.35 and I.37, about plane area for parallelograms and 
triangles that area depends only on base and height.  This result was easier to prove for 
parallelograms than triangles by decomposition, and then Euclid used the fact that a 
triangle is half a parallelogram to deduce it for triangles.  Recall also that to avoid a new 
axiom that halves of equals are equal, Hilbert proved a special case of the principle of 
similarity for triangles whose side lengths have been cut in half.  Generalizing the theory 
of area to a theory of volume will also benefit from using similarity. 
 
 



Prisms, parallelepipeds and pyramids 
To understand three dimensional solids it is natural to proceed by analogy with the two 
dimensional case.  The three dimensional analog of a parallelogram is a parallelepiped 
whose faces are all parallelograms, or more generally a “prism”, a solid whose base and 
top are congruent polygons lying in parallel planes, and whose side faces are 
parallelograms.  All slices of a prism parallel to the base give polygons congruent to the 
base and hence congruent to each other.  There are as many different types of prisms 
as there are polygons.  A prism with triangular base is a “triangular prism”, and a prism 
with a rectangular base is a “rectangular prism”, etc….  A “right prism” also has its side 
edges perpendicular to the base, and the sides are then rectangles. 
 
The three dimensional analog of a triangle is a pyramid, a figure formed from a 
polygonal base by joining every point of the base to a single vertex point outside the 
plane of the base.  The pyramid is triangular if the base is triangular and so on…  
 
The basic result about volume is again that the volumes of prisms and pyramids depend 
only on the base and height of the solid. Euclid first develops the theory of volume for 
parallelepipedal prisms using similarity, and then deduces the theory for pyramids.  If 
you browse Euclid’s Books 10 and 11 you can spot uses of similarity by looking for 
references to Book V or VI in the margins of the proofs.   
 
To pass from the case of parallelepipeds to pyramids Euclid abandons his two 
dimensional technique of finite congruent decompositions, and adopts a limiting 
process.  Just as one can decompose a triangle into a parallelogram occupying half its 
area, plus two more triangles similar to the original one, by drawing two segments 
joining the midpoints of the sides, Euclid shows how to decompose a pyramid into two 
parallelepipeds occupying more than half the volume, plus two more pyramids similar to 
the original one, again by joining midpoints of various sides.  This construction repeated, 
shows how to express the volume of a pyramid as a limit of volumes of parallelepipeds.  
Then the fact that volume depends only on base and height for parallelepipeds, implies 
the same result for pyramids. 
 
It was unknown for 2,000 years whether this limiting process is necessary, and even 
Gauss thought about it unsuccessfully.  Finally in 1900, in response David Hilbert’s 
famous “problem lecture” emphasizing the importance of this question, Max Dehn 
proved that unlike the two dimensional case for polygons of equal area, in fact one 
cannot always decompose two three dimensional polyhedra of equal volume into a finite 
number of congruent pieces.  So Euclid was again justified in his approach. 
 
Archimedes 
It is easier to apply similarity if we give ourselves another advantage and appeal to the 
ideas of a slightly later mathematician, the great Archimedes of Syracuse.  Archimedes 
was an amazing man who earned enormous respect in his native city by inventing and 
constructing many devices for the benefit and protection of the town.  In Plutarch’s 



“Lives”, the story of the siege of Syracuse by Marcellus contains a fascinating account 
of Archimedes’ role in the defense of the city from the Roman army and navy.   
 
It is said that Archimedes constructed huge cranes that lifted Marcellus’ ships from the 
water and dumped the sailors into the sea, as well as great lenses to focus the rays of 
the sun and set the ships on fire.  He made catapults that heaved missiles on the 
advancing land armies and adjusted their range according to the distance of the soldiers 
being bombarded.  He built machines to release showers of arrows from slots in the 
walls of the city, behind which the defenders remained protected. 
 
It was said that after a time the besieging soldiers became so afraid of Archimedes’ 
devices that they would run if even a rope or stick were put forth over the wall of the city.  
Finally Marcellus gave up hope of taking the city by force as long as Archimedes 
defended it, and encamped to wait for the city to run out of food, which eventually 
succeeded.   
 
When the city was at last overrun, the army had strict orders Archimedes not be harmed 
but they were not followed.  A soldier encountered Archimedes considering a 
mathematical problem and not realizing who he was, demanded Archimedes come 
along as a captive.  Archimedes was either too absorbed in thought to hear the order or 
did not care to obey and was killed.  Some accounts even suggest that Archimedes 
ordered the soldier to stand away from his diagram so he could continue his work.   
 
Although his mechanical devices amazed his fellow citizens, Archimedes had so little 
regard for them himself that he left no written works devoted to applications of his 
mathematics.  On the other hand he was very proud of his achievements in pure 
mathematics as we remark below. 
 
 
Volumes by “slicing” 
In considering the limit method used by Euclid (possibly due originally to Eudoxus), it 
seems Archimedes refined it by again using limits to express areas and volumes, but in 
a simpler more systematic way.  Much as we do today in integral calculus, he 
approximated areas and volumes by a finite sequence of horizontal strips or slabs, 
which are rectangles or right prisms, and then took the limit.   
 
I want to emphasize this is my somewhat speculative, but educated, restatement of 
what he did since I have not closely studied his work.  His discussion in “The Method” 
implies it was originally inspired by a consideration of how different solids balance each 
other when placed at different distances on a scale.  Thus he used physical reasoning 
to measure volume by its relation to weight and momentum.  It is instructive to google 
some of the wonderful illustrations of his ideas that exist on the web. 
 
 



“Cavalieri’s principle” 
The powerful new idea that follows directly from this technique of approximation by 
parallel right prisms, is that two solids whose “slice areas” are the same at every height, 
must have the same volume.  This is known today as Cavalieri’s principle after an Italian 
mathematician who apparently discovered it some 1800 years after Archimedes.  More 
precisely, imagine two solids lying between the same two parallel planes.  If every plane 
parallel to these planes cuts plane figures of equal area on the two solids then the solids 
have the same volume. 
 
We can apply this principle in two dimensions to establish again the fact that triangles 
on the same base and in the same parallels have equal area.  The two dimensional 
Cavalieri’s principle says that if every line parallel to the base of the two triangles cuts 
both triangles in congruent segments, then the triangles have the same area.  For 
triangles on the same base and in the same parallels, it follows from similarity that the 
segments cut at the same height have the same ratio to the common base, hence are 
equal.  Thus Cavalieri implies the triangles have the same area. 
 
In three dimensions imagine two pyramids on the same triangular base and both having 
vertices on the same plane parallel to the base.  Each side face of a pyramid is a 
triangle whose base is a side of the base triangle of the pyramid.  Again by similarity, 
horizontal slices at the same height are triangles whose sides have the same ration to 
the base, hence are equal.  Thus by SSS the slices of the two pyramids at the same 
height are congruent triangles, and by Cavalieri the pyramids have equal volume.  With 
a little more effort, the same result follows for pyramids on any polygonal base, e.g. by 
triangulating the base polygon. 
 
This method, that equal slice areas imply equal volume, is so powerful that Archimedes 
was able to deduce the volume of a sphere inscribed in a cylinder, a result he was so 
proud of that he asked it be engraved as an epitaph on his tombstone, which apparently 
was done.  We sketch that result and then another one he discovered, which was 
erased from his manuscript in the middle ages, and rediscovered some 100 years ago. 
 
Volume of a pyramid 
Just as it was fundamental to know that a triangle has half the area of a parallelogram 
with the same base and height, a fundamental result for volume is that a pyramid has 
1/3 the volume of a prism with the same base and height. 
 
In one nice case we can actually decompose a prism into three pyramids.  I.e. a cube 
can be cut into three congruent right pyramids, and it is instructive and fun to illustrate 
this with cardboard models as we did in class.  One can also visualize this as follows.  
Consider a corner of the cube and notice there are three faces adjacent to that corner.  
Choose one face and form a right square pyramid with that base by joining every point 
of that face to the opposite corner of the cube.  Since there are three such faces around 
that first corner, there are three such right pyramids and they fill up the cube.  These 



pyramids are all congruent by a rotation around the axis joining the two opposite corners 
of the cube.  Thus each of these right pyramids has 1/3 the volume of the cube. 
 
Exercise:  Figure out the dimensions of the faces of these three pyramids and construct 
them so they fit together to give a cube. 
 
In class Joshua pointed out it is easier to visualize decomposing a cube into 6 pyramids, 
each having one face of the cube as base, and vertex at the center.  Each of these has 
the same base as the cube but only ½ the height.  By similarity, if we consider pyramids 
with the same square base as a cube and the same height, the slice areas would 
double and so would the volumes.  Thus it would only take 3 such pyramids to equal the 
volume of the cube, verifying again that a pyramid with the same base and height as a 
cube has 1/3 the volume.  More generally, any pyramid with the same base and height 
of a prism has 1/3 the volume of the prism. 
 
Now just as Joshua suggested looking at cube as a union of pyramids with faces as 
bases and vertices at the center, we can look at any polyhedron this way, especially 
symmetrical ones like the 5 regular polyhedra.  E.g. Imagine an icosahedron and 
imagine joining each triangular face to the center of the icosahedron.  Each face again 
forms the base of a pyramid with vertex at the center.  Thus the icosahedron is a union 
of 20 triangular pyramids whose bases make up the surface and whose heights equal 
the radius of an inscribed sphere.   
 
To get the formula for the volume of an icosahedron, we would add up the volumes of 
the 20 pyramids.  To compute it we need the edge lengths of the triangular faces and 
the radius of (a sphere inscribed in) the icosahedron.  In fact either of these 
measurements determines the other, but I do not know the formula relating them.  But at 
least we can see that the volume equals 1/3 the radius times the surface area i.e. the 
area of all the faces, since the volume of each pyramid is 1/3 the radius times the area 
of its base.   For a cube the radius is ½ the side length of a face.  Thus the volume of a 
cube of side s equals s/6 times the surface area, i.e. s^3 = (s/6)(6s^2). 
 
Archimedes’ method of computing the volume of a sphere was to compare the volume 
the sphere with those of the cylinder and the cone.  We discuss those two figures next. 
 
Volume of a cone 
A cone is a pyramid whose base is not a polygon but a circle.  Euclid also assumed his 
cones are vertical, i.e. that the line joining the vertex to the center of the base is 
perpendicular to the base.  In his famous work on spheres, Archimedes said that a 
sphere is a cone whose base is the surface of the sphere and whose vertex is at the 
center.  This is analogous to the discussion above, where we considered a polyhedron 
as a (family of) pyramid(s) with base the surface of the polyhedron and vertices at the 
center of the polyhedron.   
 



The same principle applies to a circle.  When we inscribe a polygon in a circle the 
polygon is an approximation to the circle.  The more sides the polygon has, the better it 
approximates the circle.  If we connect each vertex of the polygon to the center we can 
think of the polygon as a family of triangles with vertices at the center of the circle, and 
with bases equal to the circumference of the polygon.  The area of the polygon is thus 
an approximation to that of the circle, and equals ½ the total base of these triangles 
times their common height, i.e. equals ½ the circumference of the polygon times the 
radius.  As the number of sides of the polygon increases, the circumference of the 
polygon approaches the circumference of the circle and the area of the polygon 
approaches the area of the circle.  Thus the area of a circle equals ½ the circumference 
of the circle times the radius.  This formula A = ½ CR = (1/2)2πR.R = πR^2 is the usual 
one for the area of a circle.  Indeed the number π is defined by the formula C = 2πR, i.e. 
π = C/2R. 
 
A cone is approximated by a pyramid whose base is a polygon with a large number of 
sides.  As the number of sides increases, the base of the pyramid approaches the 
circular base of the cone, and the volume of the pyramid approaches that of the cone.  
So the volume of a cone is also 1/3 the area of the base times the height.  This gives us 
the formula V = (1/3)πR^2H, for the volume of a right circular cone of base radius R and 
height H.  In particular the volume formula for a cone is simpler than for a pyramid. 
 
Relation between volume and surface area for a sphere 
Think of an icosahedron circumscribed about a sphere as an approximation to the 
sphere.  If we join the points of each face of the icosahedron to the center of the sphere 
we decompose the icosahedron as above into a family of pyramids whose bases make 
up the surface of the icosahedron and whose common height equals the radius of the 
sphere.  The volume of the icosahedron equals the sum of the volumes of the pyramids 
associated to each face.  This volume equals 1/3 the sum of their base areas times their 
common height, i.e. 1/3 the surface area of the icosahedron times the radius of the 
sphere.  If we circumscribe a polyhedron with more faces about our sphere, we get a 
better approximation.  The surface area of the polyhedron approaches closer to the 
surface area of the sphere and the volume of the polyhedron approaches closer to that 
of the sphere.  Thus in the limit, the volume of the sphere equals 1/3 the surface area of 
the sphere times its radius.  This does not compute either of these quantities, but now if 
we can compute the volume of a sphere we will know the surface area as well.   
 
Recall if C is the circumference of a circle and R its radius, we know the area of the 
circle is (½)CR.  Now we have an analogous formula for a sphere.  If S is the surface 
area of a sphere and R is its radius, then the volume of the sphere is (1/3)SR.  It is 
tempting to conjecture that in 4 dimensions the volume of the 4 ball of radius R is R/4 
times its (3 dimensional) surface area, and so on, and this is true.  Nonetheless we still 
need to compute either the volume or the surface area. 
 
 



Volume of a sphere 
Archimedes computed the volume of a sphere by comparison with the volumes of a 
cylinder and a cone using Cavalieri’s principle as follows.  It is a little easier to describe 
using a hemisphere than a full sphere.  So consider a hemisphere of radius R inscribed 
with equator at the bottom in a cylinder of base radius R and height R.  Consider also an 
inverted cone, i.e. one with vertex at the bottom, inscribed in the same cylinder.  This 
cone has (upper) base radius R and height R. 
 
By Cavalieri’s principle we can compare the volumes of these figures by comparing their 
slice areas at the same heights. At height zero, the cylinder has slice area πR^2 as does 
the hemisphere, while the cone has slice area zero, since its vertex is at the bottom.  
We claim the slice areas of the cone and the hemisphere add up to that of the cylinder 
at every height. 
 
Consider the slice areas at height x.  Each of the figures has as slice a circle at every 
height, so we only need to compute their radii at height x.  For the cylinder every radius 
is R and every slice area is πR^2.  The cone has base radius R and height R, so by 
similar triangles the circular slice at height x has radius x, hence area x^2.  The 
hemisphere has at height x a radius r that satisfies x^2 + r^2 = R^2, by Pythagoras.  
Hence the radius r satisfies r^2 = R^2-x^2, and the slice area is πR^2 –πx^2.  Thus 
indeed the slice area at height x of the hemisphere plus that of the cone, equals that of 
the cylinder.  Thus by Cavalieri the volumes also add up.   
 
Since the cone has volume = 1/3 base times height, and the cylinder has volume equal 
to base times height, the hemisphere must have volume 2/3 base times height, or 2/3 
(πR^2)R = 2/3 πR^3.  This agrees with what we learned in school, since we were told 
the volume of a full sphere is V = 4/3 πR^3.  From Archimedes’ comment above we also 
get the surface area S of the sphere, since V = (R/3)S, so S = (3/R)V = 4πR^2.  
 
Volume of a “bicylinder” 
Right after recording this result in his famous book, Archimedes states that the volume 
of a “bicylinder” can be done in the same way, but the solution is not given.  A bicylinder 
is the solid made by intersecting two circular cylinders of the same radius, meeting at 
right angles.  The reason for the missing solution is very interesting.  Archimedes’ works 
were written on parchment, which became very valuable as time went on, and there was 
an effort to re - use parchment for other purposes.  Sometime in the middle ages when 
appreciation for Archimedes’ work had presumably diminished, his book was washed to 
provide parchment for use as a prayer book.  Ironically the pages that were washed and 
re - used can still be read today, because the washing was not totally successful, and 
the prayers were written perpendicularly to the mathematics.  The unfortunate part is 
that the prayer book was shorter than Archimedes works and some unneeded pages of 
Archimedes writings were removed entirely.  It is those lost pages that contained the 
solution to the problem of the volume of the bicylinder. 
 



Still we can try to guess the solution by analogy with his solution for the sphere, since 
Archimedes said the two were similar.  The first job is to compute the slice area of a 
bicylinder.  This solid is rather hard to visualize but it looks like a sort of pagoda 
reflected in a pond, with a point at the top and bottom.  The key to visualizing the slices 
is to realize that a horizontal slice of the intersection of two cylinders is just the three 
way intersection of the two cylinders and the horizontal plane.  Moreover, intersection is 
associative, commutative and even distributive over itself, as an operation.  Thus the 
intersection with the plane can be done to each cylinder separately and then the results 
can be intersected.  But a horizontal plane meets a horizontal cylinder in a rectangle, 
and two perpendicular rectangles of the same width meet in a square.  Thus the 
horizontal slices of the bicylinder are all squares. 
 
Let’s write down the area of one of these square slices at height x.  By analogy with the 
case of a sphere where we looked only at a hemisphere, we look at the top half of the 
bicylinder.  If the two cylinders had radius R, the slice at height zero is a square of side 
2R.  At height x, we are intersecting two rectangles of the same width and we only need 
to consider one rectangle to compute the width.  This is obtained by slicing a semi circle 
perpendicularly at height x, so half the width r of the slice satisfies x^2 + r^2 = R^2.  So 
the square slice has area (2r)^2 = 4(R^2-x^2).  This looks familiar from the sphere case 
but with 4 in place of π. 
 
Ok, now we have to fill in the missing pieces of Archimedes’ solution. In the sphere case 
we had three solids, all with horizontal slices which were circles, and the radii were R, x, 
and sqrt(R^2-x^2).  Now we have only one solid, the half bicylinder, with slice which is a 
square with half its side length r = sqrt(R^2-x^2).  We want to come up with two more 
solids also having horizontal slices which are squares, presumably with half their side 
lengths equal to x and R.  Moreover they should be analogous to a cylinder and a cone. 
 
What is analogous to a cylinder, but has square horizontal slices of constant size?  The 
obvious choice is a half cube, and for every slice to have half its side length equal to R, 
it should have side 2R and height R. 
 
What is analogous to an inverted cone but has square horizontal slices, with side length 
equal to 2x at height x, i.e. with side length varying directly with the height?  It seems 
clear it should be an inverted square pyramid of height R with (upper) base a square of 
side 2R. 
 
If we compare the slice areas of these figures at height x, we get 4R^2 for the cube, 
4x^2 for the square pyramid, and 4(R^2-x^2) for the bicylinder.  Hence the volumes also 
add in the same way, and half the bicylinder has volume equal to the volume of the half 
cube minus the volume of the square pyramid.  Since the square pyramid again has 1/3 
the volume of the half cube, the volume of the half bicylider is 2/3 that of the half cube.  
Hence the full the bicylinder has 2/3 the volume of the cube, or (2/3)(8R^3) = (16/3)R^3. 
 



The same relation S = (3/R)V between the surface area and volume holds again, so the 
bicylinder has surface area S = 16R^2.  Surface area is often quite hard to calculate by 
calculus, and I have not seen this surface area computation done for a bicylinder in a 
modern calculus book. 
 
 
 
Newton’s approach 
We have seen that Archimedes knew that the volume of a figure is determined by all its 
slice areas.  The next advance is a way to go from a formula for the slice area to a 
formula for the volume.  This may not have occurred to the Greeks because of their 
preference for geometry over algebra.  It may be that this advance was not possible 
until the rise of algebra for expressing formulas.  Today a calculus student learns to do 
the calculation of the volume of a sphere as follows. 
 
From the fundamental theorem of calculus, and the method of “volumes by slicing” we 
learn in calculus, that if the slice area formula for a solid at height x is A(X) = x^n then 
the volume formula for the portion of the solid up to height x is V(x) = [ x^(n+1)]/(n+1).  
Thus to get the volume formula we raise the power of the area formula by one, and then 
divide by the new power.  This is called anti-differentiation, or “integration” for 
polynomials. 
 
Recall the slice area formula for a sphere, A(x) =   πR^2 – π x^2.  Applying the rule 
above gives volume formula V(x) = πR^2 x – π(x^3/3), (because the power of x in the 
first term πR^2 was x^0 = 1).  Setting the height x equal to R, gives the volume of the 
hemisphere V(R) = (2/3)π R^3, so again the volume of the sphere is (4/3) πR^3. 
 
Exercise:  Use calculus to find the volume of the bicylinder from its slice area formula. 
 
 
Epilogue to epsilon camp geometry notes 
 
Volume calculations with and without calculus 
Terminology:  Today we speak of the interior of a sphere as a ball, so we would not speak of 
finding the volume of the sphere in three space, but only its surface area.   I.e. we also consider 
the sphere in three dimensional space to be only 2 dimensional even though it is curved and lives 
in three space.  Thus we say the area of the 2 - sphere of radius R is 4πR^2 and the volume of the 
3-ball is (4/3)π^R^3. 
   
“Surface area” versus volume:  If we try to compute the volume of the 3- sphere in 4 space, or 
the 4 dimensional volume of its interior, the 4- ball, we have a relationship between the sphere 
and the ball analogous to the one found by Archimedes.  Just as the volume of the 3-ball equals 
R/3 times the surface area of the 2-sphere, the (4 dimensional) volume of the 4- ball of radius R 
equals R/4 times the (3 dimensional) volume of its surface, the 3- sphere.  So again we only need 
to find one of them. 



Volumes by slicing 
If we try to use calculus to do this 4 dimensional volume in the same way as for the 3-ball, using 
volumes by slicing, an algebraic difficulty arises.  The radius of the slice is always a square root, 
and in odd dimensions that square root is raised to an odd power, which makes it a fractional 
power that is harder to anti - differentiate.  I.e. the slice area of the three ball is the area of a 2-
ball or disc, which was πr^2 = π(R^2-x^2) by Pythagoras.  This is a nice integral power of x and 
is easy to anti -differentiate as we saw earlier.  However the slice volume of a 4 ball is the 
volume of a 3-ball, namely (4/3)πr^3 = (4/3)π(R^2-x^2)^(3/2), since again r^2 = R^2-x^2.  This 
formula is harder to anti differentiate.  Although it is possible to do it using trig functions, and 
you will learn this in calculus, we will use an easier approach. 
 
Area of a 2-disc revisited:  
horizontal slices: If we look back at the area of a 2-ball or disc, it is more natural to look at it as 
an expanding family of circles, rather than a growing stack of straight slices.  I.e. if we grow the 
area upwards, with the slice at height x being a segment of length 2r, where r^2 = R^2-x^2, then 
we have a slice length formula 2r = 2(R^2-x^2)^(1/2), which is hard to anti - differentiate.  In 
fact you will recall we did this area problem by taking a limit of areas of triangles rather than by 
calculus.   
 
circular slices: It is easy also by calculus if we grow the area outwards, with the leading edge of 
the growing area being a circle of radius x.  Then the slice length is the length of this circle, 
which is 2πr = 2πx, and this is easy to anti differentiate, as πx^2.  Setting x=R gives us πR^2 
immediately as the area of the 2-disc, i.e. the area of the interior of the circle.  [I am reminded of 
a remark long ago by a friend of mine, an Indian artist who saw me shading a disc with 
horizontal lines in a drawing, and said he would never do it that way, but would draw expanding 
circles instead.  It just did not make visual sense to him my way.] 
 
center of mass :  The area calculation for a disc can also be done without calculus in a way used 
by the Greek mathematician Pappus, and understood by Archimedes, as follows.  One knows in 
physics that the momentum of a body can be computed by thinking of the entire body as located 
at one point, its center of mass, or center of gravity.  A 2-disc is generated by revolving one 
radius around the center of the circle.  The area generated is equal to the length of the radius 
multiplied by the distance traveled by its center of mass, or center of area.  Since the center of 
the radius of length R is the point at distance R/2 from the center, when the radius revolves 
around the center that point travels a distance of 2π(R/2) = πR.  Since the radius has length R, 
thus the area generated equals πR^2. 
 
This calculation is essentially the same as the one we did earlier using limits of triangles.  Recall 
that calculation yielded the formula A = (1/2)CR, where C is the circumference of the circle or 
the limit of the bases of the triangles.  Another way to look at the area formula for a triangle is 
that it equals the height times the average base which is B/2, the length of a segment parallel to 
the base but halfway up the triangle.  Then C/2 is the limiting value of the total average base of 
the triangles approximating the circle, so the formula for the area of the circle again equals 
(C/2)R.  This of course equals the distance traveled by the center of the revolving radius times its 
length. 
 



Volume of a 3-ball revisited: 
i) horizontal slices:  For the volume of the 3-ball the opposite algebraic situation occurs.  I.e. if 
we think of the 3-ball in terms of horizontal slices, the formula x^2 +y^2 +z^2  = R^2 for the 3- 
ball, gives at height x, the formula y^2+w^2 = R^2-x^2 = r^2, the 2-disc of radius r = sqrt(R^2-
x^2) as we know.  Then the slice area is πr^2 = π(R^2-x^2), which is easy to anti-differentiate, as 
we did before, getting π(R^2x – x^3/3).  Setting x=R of course gives (half) the volume of the 3-
ball as (2π/3)R^3. 
 
ii) cylindrical slices (“shells”):  We can also look at a 3-ball as obtained by revolving the right 
half of a 2-disc around the y axis.  If we think of the 2-disc as a union of vertical lines drawn 
from x = 0 to x = R, we have a line of height H, where H^2 = R^2-x^2.  Thus the revolved 
segment sweeps out a cylindrical slice of the 3 ball having area 2πrH = 2πx.sqrt(R^2-x^2).  This 
formula is harder to anti -differentiate than the horizontal slice formula above, but not too hard 
using the “chain rule” or “substitution” formula which one learns in calculus. 
 
iii)  center of mass:  We can calculate the volume of a ball in principle by multiplying the area 
of the half disc, by the distance traveled by its center of mass.  However it is not at all obvious 
where the center of mass is for a half disc.   Since we already know the volume of 3-ball, we can 
use it backwards to locate that center of mass as follows.  If the center of mass of the right half of 
the disc of radius R is located at distance r from the y axis, then the volume (4/3)πR^3 of the 3-
ball, equals the distance 2πr traveled by this point times the area (1/2)πR^2 of the half disc.  Thus 
we should have 2πr(1/2)πR^2 = (4/3)πR^3.  This implies, let’s see now, π^2.r.R^2 = (4/3)πR^3, 
so r = 4R/(3π) I hope, or a little closer than halfway to the y axis.  This makes sense because the 
half disc is thicker near the y axis. 
Since Archimedes knew the volume of 3-ball, he would have known this center of mass as well. 
 
Volume of a 4 dimensional ball 
horizontal slices:  If we consider the 4-ball of radius R, with equation x^2+y^2+z^2+w^2 = 
R^2, the horizontal slice at height x is the 3-ball with equation y^2 + z^2 + w^2 = (R^2-x^2),  of 
radius r = sqrt(R^2-x^2).  (As usual we only consider half the 4-ball, starting with the slice at 
height x = 0 being the 3-dimensional “hemisphere” y^2 + z^2 + w^2 = R^2.)  Here again, since 3 
is an odd dimension our slice volume formula equals (4/3)πr^3 = (4/3)π(R^2-x^2)^(3/2), which 
is again hard to anti-differentiate without using complicated trig formulas and a new technique of 
“integration by parts”. 
 
“Cylindrical shells”: Just as in all previous cases, we can generate a 4-ball by revolving half a 
3-ball around an axis.  Although is hard to visualize, we proceed exactly by analogy, and 
consider revolving the horizontal slices of that half 3-ball around an axis.  Thus the slice at 
height x would be a 2 disc of radius r, where r^2 = R^2-x^2 as before, and this 2 dimensional 
slice would revolve around a circular path of length 2πx.  Thus the full revolved 3 dimensional 
cylindrical slice of the 4 –ball would have volume 2πx(πr^2) = 2π^2.x.(R^2-x^2) = 2π^2R^2.x – 
2π^2.x^3.  This formula is easy to anti-differentiate using the familiar formula x^(n+1)/(n+1) for 
the anti-derivative of x^n, yielding π^2R^2.x^2 – (1/2)π^2x^4.  Setting x = R, gives the volume 
of the 4-ball as (1/2)π^2.R^4. 
Any calculus student could do this calculation but most have not seen it. 
 



Centers of mass:  Again we would not know the center of mass of half a 3-ball without using 
the volume formula above for a 4-ball, so cannot yet compute that volume this way, but we can 
use Archimedes’ trick to do a calculation that Archimedes could have done.  Namely he showed 
that the volume of half a 3-ball equals the difference of the volumes of a cylinder min us that of a 
cone.  Now the center of mass of a cylinder is obviously half way up, and Archimedes knew that 
just as the center of mass of a triangle is 1/3 of the way up from the base, the center of mass of a 
cone is ¼ the way up from the base.  
  
Thus we can use centers of mass and subtraction to get the volume of a 4-ball.  I.e. a cylinder of 
height R and base radius R has center of mass at height R/2, and volume πR^2.R, so revolving it 
around an axis at its base gives 4 dimensional volume of 2π(R/2).πR^2.R = π^2.R^4.  Now the 
inverted cone of height R and base radius R has center of mass at distance ¼ of the way from its 
base, hence distance (3R/4) from the axis, and volume (1/3)πR^2.R.  Thus revolving it generates 
a 4 dimensional volume equal to (2π)(3R/4). (1/3)πR^2.R = (1/2)π^2.R^4.  Subtracting the 
volume of the revolved cone from that of the revolved cylinder, gives the 4 dimensional volume 
of the revolved half 3-ball, i.e. the volume of the full 4-ball as π^2.R^4 - (1/2)π^2.R^4 = 
(1/2)π^2.R^4. 
 
Remarks:  This is another little calculation I made up just for you guys.  I.e. I have not seen how 
to generalize Archimedes’ work to 4 dimensions before, although it is probably out there 
somewhere in the wide wide world.   
The only thing I have not justified is how Archimedes knew the center of mass of a cone.  He 
probably discovered it using a balance beam, and then justified it later mathematically.  One 
approach is to take the limit of an approximation by slabs as follows.  Chopping an inverted cone 
of height R and base radius R, into n horizontal slabs and approximating those slabs by discs, 
gives n discs of base radii (1/n)R, (2/n)R,…..,(n/n)R, and all of height R/n.   The disc of radius 
kR/n generates force on the balance beam proportional to its distance kR/n from the fulcrum or 
balance point, which causes it to try to revolve around a circle also of radius kR/n.   
Thus the disc of radius kR/n, and volume (R/n)(πk^2R^2/n^2) would generate force or work or 
something proportional to (kR/n) (R/n)(πk^2R^2/n^2).  Not being a physics guy, I prefer to 
multiply this by 2π and think of it as generating 4 dimensional volume of (2πkR/n) 
(R/n)(πk^2R^2/n^2) = 2π^2.k^3.R^4/n^3. 
Adding up over all n of these slabs for k=1,…,n,  gives total 4 dimensional volume of 
(1/n^4)[2π^2.R^4]/(1^3+2^3+….+n^3).   Now we know, and maybe Archimedes did too, a 
formula for the sum of those cubes of form n^4/4 + lower degree terms.  Thus the formula 
becomes  (1/4)(2π^2R^4)(1/n^4)(n^4 +  terms of degree 3 or less in n).  As ninfinity, this 
approaches the limit  (1/2)(π^2R^4).  To get this same result by revolving a mass of the same 
volume as the cone and concentrated at one point at distance r from the axis we would need 
(2πr)(1/3)(πR^3) = (1/2)(π^2R^4).  Solving for r gives r = (3/4)R (measured from the vertex of 
the cone), as we claimed. 
 
Volume of the 3-sphere, i.e. “surface area of the 4-ball” 
To get the 3-dimensional volume of the surface of the 4-ball we can use Archimedes’ relation 
and just multiply the 4-dimensional volume of the ball by 4/R.  This gives 2π^2R^3 as the 
surface “area” of the 4-ball, i.e. for the 3-dimensional volume of the 3-sphere.  
 


