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8000  Fall 2006  Day 3.    
Canonical forms of matrices, the power of Cramer's rule 
 
 Our decomposition theorem gives us a standard model in each   isomorphism class of 
finitely generated torsion k[X] modules.  This will be used next to provide a standard matrix 
representative for each conjugacy class, or similarity class as it is usually called, in the ring 
Matn(k), of n by n matrices over any field k. 
 
 Recall that a linear map T:V--->V on a k vector space V, provides a unique k algebra map 
k[t]--->Endk(V), sending t to T, and hence f(t) to f(T), and hence a unique k[t] module structure 
on V.  We will denote Endk(V) simply by End(V) in this chapter for brevity, since we will not be 
concerned with the larger ring of group endomorphisms.   
 Conversely, a k[t] module structure on V singles out a unique linear map T, the image of t 
under the map k[t]--->Endk(V).  Thus k[t] module structures on V are in natural bijection  with 
the elements of End(V).  We want to ask what equivalence relation is imposed in this way on 
End(V) by considering isomorphism classes of modules. 
 
 Note that if f:(V,T)--->(V,S) is a k[t] module isomorphism, then f is a k isomorphism that 
takes multiplication by (i.e. application of) T into multiplication by S.  Thus f(Tv) = S(fv) for 
every v in V.  Since f is an isomorphism this implies Tv = (f-1Sf)v, for every v.  Hence S and T 
are conjugate by the isomorphism f.    
 Conversely, these equations show that if T = (f-1Sf), then T and S define isomorphic k[t] 
modules via the isomorphism f.  Thus isomorphism classes of k[t] module structures on V 
correspond to conjugacy classes of endomorhisms via the action of Aut(V) on End(V). 
 
 Hence when V has finite k dimension, our canonical models of each k[t] - isomorphism 
class, translate into canonical representatives of each conjugacy class in End(V).  Recall each 
finitely generated torsion k[t] module (V,T) has a model V ≈ k[t]/f1 x ....x k[t]/fm , where each fi 
is a monic polynomial in k[t], and fi divides fi+1.   
 Under the isomorphism (V,T) ≈ k[t]/f1 x ....x k[t]/fm  the linear map T:V--->V, i.e. 
multiplication by T, becomes multiplication by the variable t on each factor of k[t]/f1 x ....x 
k[t]/fm.  Hence if we choose a natural k basis for this model vector space, the resulting matrix for 
t will give a natural matrix representing T in some corresponding k basis for V. 
 
 A k - basis for k[t]/f1 x ....x k[t]/fm, can be obtained as the union of bases for each factor 
space k[t]/fi, and the simplest basis for k[t]/fi, is {1, t, t2,..., tri-1}, where fi has degree ri.  If f = 
a0 + a1t + ....+ ar-1tr-1 + tr, 
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 the matrix of t in this basis is this: 

0 0 0 0 !a
0

1 0 0 0 !a
1

0 1 0 0 !a
2

.. . . .. . . ..

0 0 .. 1 !a
r

" 

# 

$ 

$ 

$ 

$ 

% 

& 

' 

' 

' 

' 

, where the jth column  

 
is the coefficient vector of t times the jth basis vector.  E.g. t(1) = 0(1)+1(t) + 0(t2) + ...+ 0(tr-1), 
gives the first column. 
 
 This is called a cyclic basis, since the linear map carries each basis vector to the next one, 
except for the last one, which is carried to a linear combination of the basis by means of scalars 
which are precisely minus the coefficients of the polynomial f.  This is called a companion matrix 
Cf for f.  [Other versions of it in other books may have the coefficients of f along the bottom, and 
the 1's above the diagonal.] Note that if v1,...,vn is one cyclic basis for (V,T) then for any c ≠ 0, 
cv1,...,cvn is another, so cyclic bases are never unique. 
 
 If f1,...,fm is the sequence of polynomials defining the module (V,T), the full matrix for T 
using the cyclic bases for each factor looks like this: 
 
Cf1[ ]

Cf
2

[ ]
.. .

Cfm[ ]

! 

" 

# 

# 

# 

$ 

% 

& 

& 

& 

, where there are zeroes away from the Cfi. 

 
 Summarizing, we have the following. 
Theorem:  If V is a vector space of finite dimension n over a field k, and T is any linear 
endomorphism of V, there exist bases for V in which the matrix of T is composed of one or more 
blocks, each block being a companion matrix for a monic k polynomial fi.   
 The sum of the degrees of the fi equals n, and we may choose them so each fi divides fi+1.  
If we do this, then two maps S,T of V are conjugate if and only if they have exactly the same 
matrix of companion blocks.   There is exactly one companion matrix block Cf for each factor 
k[t]/(f) in the standard decomposition of the k[t] module structure for (V,T).  Each block Cf has 
dimension deg(f) by deg(f). 
 
Terminology:  We call the unique matrix of this type associated to T, the rational canonical 
matrix for T. 
Two natural questions remain:  
1) how do we find the canonical form for a given matrix? and (more difficult):  
2) how do we find a basis that puts a given matrix into canonical form?   
A third question is:  
3) is there a simpler canonical matrix in cases where the polynomials fi are particularly simple, 
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e.g. when they all factor into linear factors over k? 
 
 Before addressing these questions, we derive some useful consequences of the results we 
already have.  For example we can already compute the important invariant ∏fi of the module 
(V,T), using determinants.  Briefly, we claim this product is the "characteristic polynomial" of T, 
∏fi = det[tI-T] = chT(t).  Since fm is the annihilator of the module (V,T), this implies the Cayley 
Hamilton theorem: chT(T) = 0. 
 
 Before proving this, we recall the basic theory of determinants, including LaGrange's 
formulas for expanding them along any row or column, and the resulting "Cramer's rule". 
Review of determinants. 
 If A = [aij] is an n by n matrix over a commutative ring, denote by Aij the (n-1) by (n-1) 
matrix obtained from A by deleting the ith row and jth column.  Then LaGrange's formulas say, 
for each fixed value of i, det(A) = ∑j (-1)i+j det(Aij), (expansion by the ith row), and for each 
fixed value of j, det(A) = ∑i (-1)i+j det(Aij), (expansion  by the jth column.   
 Thus if we define adj(A) = the adjoint of A, as the matrix whose i,j entry equals (-1)i+j 
det(Aji), i.e. as the transpose of the matrix of signed determinants of the Aij, it follows that the 
matrix products adj(A).A = A.adj(A), both equal the diagonal matrix  det(A).I, whose entries 
along the diagonal are all equal to det(A).   
 Thus if det(A) is a unit in the ring of coefficients, then A is an invertible matrix with 
inverse equal to (det(A))-1.adj(A).  Since for any two n by n matrices A,mB we always have 
det(AB) = det(A)det(B), the converse is also true.  I.e. AB = I implies det(A)det(B) = det(I) = 1, 
so both det(A) and det(B) are units.  Thus the equation adj(A).A = A.adj(A) = det(A).I, yields a 
formula for the inverse of an invertible A, and hence Cramer's rule for solving invertible systems 
AX=Y. 
 Cramer's formula also implies that a matrix and its transpose have the same determinant.  
I.e. since the transpose of the adjoint is the adjoint of the transpose, taking the transpose of the 
equation adj(A).A = A.adj(A) = det(A).I, gives (det(At).I) = At.adj(At) = adj(At).At = 
(det(A).I)t = det(A).I, the last because the diagonal matrix det(A).I is symmetric. 
 
Define: the characteristic polynomial of a linear map T on a finite dimensional space chT(t) = 
det([tI-A]) where A is any matrix for T. 
 
By the previous remarks, a matrix A and its transpose At have the same characteristic 
polynomial. 
 
Note: If A,B are two matrices matrix for T, A and B are conjugate, i.e. B = C-1AC for some 
invertible C.  Then since det(B) = det(C-1AC) = det(C-1)det(A)det(C) =  det(A)det(C-1)det(C) 
= det(A), we see A and B have the same determinant.  Similarly, [tI-A] and C-1[tI-A]C =  
[C-1tIC-C-1AC] = [tI-B] have the same determinant, since t.I commutes with every matrix C.  
Hence the characteristic polynomial of T is well defined by any matrix for T.  It is easy to see the 
constant term of chA(t) is ± det(A), and the coefficient of tn-1 is minus the trace of A, (minus 
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the sum of the diagonal entries). 
 
Exercise: If Cf is a companion matrix for the monic polynomial f, then ch(Cf) = f. [hint: use 
induction and expand across the first row.]  One sees immediately the trace of Cf is  - an-1. 
 
Corollary:(Cayley Hamilton) If T is any linear transformation, then chT(T) = 0.  In particular 
a matrix satisfies its characteristic polynomial. 
proof: The annihilator ideal of the cyclic module R/I where I is any ideal of the ring R, equals I.  
In particular the annihilator ideal of k[t]/(f) is (f).   Hence the annihilator of the module  
k[t]/f1 x ....x k[t]/fm, where fi divides fi+1, is fm.  I.e. the smallest degree monic polynomial f 
such that f(t) = 0 on this module is fm.  If this module represents (V,T), then the minimal 
polynomial of T is fm, and we just showed the characteristic polynomial of T is the product ∏fi.  
So the minimal polynomial of T divides its characteristic polynomial, which implies the 
corollary.  QED. 
 
Note: Since every factor fi divides fm, this proof shows that every irreducible factor of chT(t) is 
an irreducible factor of the minimal polynomial mT(t), (and vice versa).  Moreover, for a cyclic or 
companion matrix, the minimal and characteristic polynomials are equal.  This is the analog of the 
fact that for a cyclic group Z/nZ, the order n of the group equals the annihilator of the group. 
 
Example: A nilpotent matrix A is a square matrix such that Am = 0 for some m.  If A is 
nilpotent, follows that An = 0, where n is the dimension of the matrix A.  Since all coefficients ai 
of the characteristic polynomial for a nilpotent matrix are 0 except the leading one, the rational 
canonical form of a nilpotent matrix consists of blocks of form: 
 
0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

.. . . .. . . ..

0 0 .. 1 0

! 

" 

# 

# 

# 

# 

$ 

% 

& 

& 

& 

& 

  The reader should verify this matrix is nilpotent. 

 
 
Direct proof of Cayley Hamilton: 
 Cramer's rule implies the Cayley Hamilton theorem directly, without using the 
decomposition theorem, or the rational canonical form, as follows.  Let [tI-A] be the 
characteristic matrix for A, with coefficients in k[t], and substitute t = A into this matrix, 
obtaining an n by n matrix with coefficients in the subring k[A], of Matn(k).   
 This may be viewed as defining a linear map on the product space (kn) x....x (kn), a 
product of n copies of kn.  Note this is not the same as substituting t = A into tI-A viewed as a 
polynomial with matrix coefficients, as that would give A.I-A = 0.  Our result instead is the 
following n by n matrix M: 
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M = 

A ! a
11

!a
12

... !a
1n

!a
21

A ! a
22

... !a
2 n

. . .. ... ..

!a
n1

!a
n2

... A ! a
nn

" 

# 

$ 

$ 

$ 

% 

& 

' 

' 

' 

.  Now take the transpose of this, 

 
 

Mt = 

A ! a
11

!a
21

... !a
n1

!a
12

A ! a
22

... !a
n 2

. . .. ... ..

!a
1n

!a
2n

... A ! a
nn

" 

# 

$ 

$ 

$ 

% 

& 

' 

' 

' 

, and apply it to the column of vectors 

e
1

e
2

. ..

e
n

! 

" 

# 

# 

# 

$ 

% 

& 

& 

& 

  

 
 
in (kn)n. 
 

By definition of the entries in A, this yields Mt  

e
1

e
2

. ..

e
n

! 

" 

# 

# 

# 

$ 

% 

& 

& 

& 

= 

0

0

...

0

! 

" 

# 

# 

# 

$ 

% 

& 

& 

& 

.  Now multiply  

 
Mt from the left by adj(Mt) = (adj(M))t.  By Cramer's rule adj(Mt) Mt =  
 

ch(At)(A).I = chA(A).I =  annihilates the vector 

e
1

e
2

. ..

e
n

! 

" 

# 

# 

# 

$ 

% 

& 

& 

& 

.  I.e. the matrix  

 

product 

ch
A
(A) 0 .. 0

0 ch
A
(A) . . 0

.. .. . . ..

0 0 .. ch
A
(A)

! 

" 

# 

# 

# 

$ 

% 

& 

& 

& 

e
1

e
2

. ..

e
n

! 

" 

# 

# 

# 

$ 

% 

& 

& 

& 

 = 

0

0

...

0

! 

" 

# 

# 

# 

$ 

% 

& 

& 

& 

.   Hence chA(A)(ei) = 0 for  

 
each i, so chA(A) = 0.  QED. 
 
Note: This proves the minimal polynomial divides the characteristic polynomial, but does not 
show they have the same irreducible factors. 
 
 
The canonical presentation of (kn, A) by the characteristic matrix of A. 
 Next ask how to find the rational canonical form of a given n by n matrix A over a field k.  
Since it is determined by the cyclic decomposition of the k[t] module (kn,A), it suffices to 
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diagonalize any presentation matrix for this module.  So we look for a matrix M of polynomials 
in k[t], whose cokernel is isomorphic to (kn, A) as k[t]- modules.  Perhaps not surprisingly, it is 
given by the only k[t] matrix we know, the characteristic matrix [tI-A].   
 It is easy to find an explicit sequence of k[t] generators for (kn,A), since e1,...,en are k 
generators, hence also k[t] generators of kn.  The map (k[t])n--->kn, sending Ei to ei, where E1 = 
(1,0,...,0) in (k[t])n, and e1 = (1,0...,0) in kn, is thus a surjective k[t] module map, where ∑ fi(t)Ei 
in (k[t])n goes to ∑ fi(A)ei in kn. 
 
The next theorem is our main result. 
Theorem:  Given an n by n matrix A over a field k, defining a k[t] module structure on kn, the 
k[t] module map (k[t])n--->kn, sending ∑ fi(t)Ei to ∑ fi(A)ei, is surjective.  Its kernel is a free 
k[t] module of rank n generated by the columns of [tI-A], the characteristic matrix of A.   I.e. the 
following sequence of k[t] modules is exact: 0--->(k[t])n--->(k[t])n--->kn--->0, where the left 
map is multiplication by [t.I-A]. 
 
Remark: This will follow from a version of the wonderful "root factor" theorem, but first we 
work an example using it. 

Let A = 
1 2 3

4 5 6

7 8 9

! 

" 

# 

# 

$ 

% 

& 

& 
.  Then det(A) = 0, since the sum of the 1st and 3rd rows is twice the middle 

row.  The trace is 15, so we know that chA(t) = t3-15t2+?t.  Dr Shifrin calls the unknown 
coefficient Fred(A).  So we only need to compute Fred.  A tedious calculation with polynomials 
and lots of minus signs reveals that the characteristic polynomial det(tI-A) = t3-15t2-18t, so Fred 
is -18.  But we will compute this another way. 
   
 To obtain the minimal polynomial of A, we use the previous theorem which says [tI-A] 
is a presentation matrix for the k[t] module (kn,A), so we want to diagonalize [tI-A], i.e.: 
 
t ! 1 !2 !3

!4 t ! 5 !6

!7 !8 t ! 9

" 

# 

$ 

$ 

% 

& 

' 

' 
.  Non zero constants are units, so we switch the first two  

columns, and multiply the 2nd row by 2, getting: 
 

!2 t !1 !3

2( t ! 5) !8 !12

!8 !7 t ! 9

" 

# 

$ 

$ 

% 

& 

' 

' 
.  Now add (t-5) times the 1st row to the 2nd row, and  -4 times the 1st 

row to the 3rd row, getting: 
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!2 t ! 1 !3

0 t
2 ! 6t ! 3 3 ! 3t

0 !3 ! 4t t + 3

" 

# 

$ 

$ 

% 

& 

' 

' 
, which immediately gives 

1 0 0

0 t
2 ! 6t ! 3 3 ! 3t

0 !3 ! 4t t + 3

" 

# 

$ 

$ 

% 

& 

' 

' 
,  

 
(think about it).   Add 3 times the 3rd row to the 2nd,  and switch 2nd and 3rd columns: 
1 0 0

0 12 t
2 !18t !12

0 t + 3 !3 ! 4t

" 

# 

$ 

$ 

% 

& 

' 

' 
, multiply the 3rd row by -12, and add to it (t+3) times  

the 2nd, yielding: 
 
1 0 0

0 12 t
2 !18t !12

0 0 t
3 !15t2 !18t

" 

# 

$ 

$ 

% 

& 

' 

' 
, hence 

1 0 0

0 1 0

0 0 t
3 !15t2 !18t

" 

# 

$ 

$ 

% 

& 

' 

' 
. 

 
This shows our k[t] module is cyclic, isomorphic to k[t]/(t3-15t2-18t), so t3-15t2-18t, is both 
minimal and characteristic polynomial of A.  
 
The rational canonical matrix for A (and every matrix conjugate to A) is:  
0 0 0

1 0 18

0 1 15

! 

" 

# 
# 
# 

$ 

% 

& 
& 
& 

.  Please check me on this, as I am pretty weak at computation. 

 
As corollary of the theorem above we get another proof of  
Cayley Hamilton:  If the k[t] module (kn, A) is isomorphic to the product (k[t]/f1) x ....x 
(k[t]/fm), in standard form, i.e. where fi divides fi+1, then the minimal polynomial of A is fm and 
the characteristic polynomial is the product ∏fi.   
proof:  Since [tI-A] is a presentation matrix for this module, there exist invertible matrices A, B 
over k[t] such that A[tI-A]B is diagonal, with lower diagonal entries equal to the fi, and higher 
diagonal entries = 1.   
 Hence det(A)chA(t)det(B) = ∏fi.  Since A, B are invertible over k[t], their determinants 
are units in k[t] hence non zero constants in k.  Since chA(t) is monic, the coefficient of the 
leading term on the left equals det(A)det(B).  Since the product ∏fi on the right is also monic, 
det(A)det(B) = 1, hence chA(t) = ∏fi.  QED. 
 
Note the analogy here with the structure of finite abelian groups.  If G is an abelian group 
isomorphic to (Z/n1) x ...x (Z/nr), where ni divides ni+1, then nr is the annihilator of G, (it 
generates the principal annihilator ideal), and the cardinality of the group G is ∏ni.  In both cases 
it is hard to compute the precise annihilator, but we can compute a multiple of it more easily, i.e. 
in one case the order of the abelian group, and in the other the characteristic polynomial of the 
matrix.  In both cases the computable element has the same prime factors as the annihilator. 
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 Next we recall the root - factor theorem, and apply it to prove the theorem above, that the 
characteristic matrix of A gives a presentation for the k[t] module (kn, A).  We also get another 
proof of Cayley Hamilton. 
 
Polynomials with non commutative coefficients:  If R is any ring, not necessarily 
commutative, define the polynomial ring R[t] as usual, but where powers of t commute with all 
coefficients in R, although the coefficients may not commute among themselves. 
 
Hence f(t) = ∑ aiti = ∑ tiai, but if we set t = c, where c is in R, it makes a difference whether we 
set t = c in the first or the second of these expressions.  We call fr(c) = ∑ aici the right value of f 
at c, and fl(c) = ∑ ciai, the left value of f at c. 
 
Remainder theorem: If f(t) is a polynomial in R[t], then we can write f(t) = (t-c)q(t) + fl(c) = 
p(t)(t-c) + fr(c), i.e. we can divide f(t) by (t-c) from the left, with remainder the left value of f at 
c, and similarly from the right.  The quotients and remainders are unique if we require the 
remainder belong to R. 
proof:  We do it for left evaluations and left division.  This is the binomial theorem, i.e. replace t 
in f(t), by (t-c)+c and expand.  We get in each term tiai, terms in which all but the last have a 
factor of (t-c), i.e. tiai = [(t-c)+c]i ai = [(t-c)q(t) + ci] ai.  Thus f(t) = ∑ tiai = (t-c)Q(t) + ∑ciai, 
and we see the remainder is indeed the left evaluation of f at c.   

This proves existence.  For uniqueness, assume f(t) = (t-c)q(t)+r = (t-c)(p(t)+s, where r,s 
belong to R.  Then (t-c)[q(t)-p(t)] = s-r.  Thus the left hand side also belongs to R.  But 
multiplication by (t-c) raises the degree by one, so the left hand side has degree ≥ 1, unless  
[q(t)-p(t)] = 0.  then also r-s = 0.  Hence both quotient and remainder are unique.  QED. 
 
 
Corollary: If f(t) is any polynomial in R[t], f is left divisible by (t-c) if and only if fl(c) = 0.  
Similarly for right divisibility. 
proof: The expression we gave shows that f(t) = (t-c)q(t) + fl(c), Hence if fl(c) = 0, then f is left 
divisible by (t-c).  Conversely, if f is left divisaible by (t-c), uniqueness shows the remainder, 
which is zero, must equal fl(c), so fl(c) 0.  QED.  
 
 To apply these results to products of matrices, we prove that matrices with polynomial 
entries are equivalent to polynomials with matrix coefficients. 
 
Lemma: If k is a field, the non commutative ring Matn(k[t]) of n by n matrices with entries from 
k[t], is isomorphic to Matn(k)[t], the ring of polynomials with coefficients in the non 
commutative ring Matn(k). 
proof:  Just as with commutative rings, a ring map R[t]-->S is obtained from a ring map R--->S 
plus a choice of element in S to send t to, only this time, since t commutes with R in R[t], we 
must choose as image of t, an element that commutes with the image of R in S.  So we map 
Matn(k) into Matn(k[t]) by viewing scalar matrices as polynomial matrices, and then send t to 



 9 

the matrix t.I, which is in the center of Matn(k[t]), i.e. it commutes with everything.  It is an 
exercise to check this ring map is injective and surjective.  QED. 
 
 It follows we we get equivalent results by multiplying two matrices of polynomials as 
matrices, or as polynomials with matrix entries. 
 
Corollary: Cayley Hamilton.  A square matrix A over a commutative ring R, is a root of its 
characteristic polynomial chA(t). 
proof:  By Cramer's rule, we have (tI-A).adj(tI-A) = chA(t).I, as products of matrices.  Then it 
holds also as products of polynomials.  Setting t = A gives zero on the left, hence also on the 
right side.  I.e. if chA(t) = ∑ tici, where the ci belong to R, then chA(t).I = (∑ tici).I = ∑ ti(ci.I).  
Thus setting t = A gives 0 = ∑ Ai(ci.I) =   ∑Ai(ci) = ∑ ciAi = chA(A). QED. 
 
 If in the lemma above, we think of the matrix on the left acting individually on each 
column vector of the matrix on the right, we can also consider matrices of polynomials acting on 
column vectors of polynomials, as multiplication from the left of polynomials with matrix 
coefficients, times polynomials with column vector coefficients.  I.e. the lemma also holds, with 
the same proof, for polynomials with coefficients in any ring R with identity, acting from the left 
on polynomials with coefficients in any (unitary) left module over R. 
 
 So let kn[t] denote polynomials with coefficients which are column vectors from kn.  This 
is not a ring, in particular the coefficents do not have an element 1, so this object does not contain 
t.  But the coefficients do contain the basic vectors ei, and we can multiply these by polynomials 
over k and add up.  In particular this object is a k[t] module, and is isomorphic as such to the free 
k[t] module (k[t])n.   
 I.e. if Ei are the standard free k[t] basis vectors in (k[t])n, just send Ei to ei, and ∑fiEi to 
∑fiei where fi are polynomials in k[t].  The expression ∑fiei can be re - expanded as a polynomial 
in t with vector coefficients by expanding each term as fei = (a0+a1t+...+tn)ei =  
(a0ei + t a1ei +...+ tnei), and then combining coefficients of like powers of t, from various terms, 
to get coefficient vectors. 
 
Exercise:  Show this gives a k[t] module isomorphism (k[t])n--->kn[t]. 
 
As we have remarked above, the previous lemma, shows multiplication of matrices corresponds 
to multiplication of polynomials, i.e.  the isomorphisms above, give isomorphisms of 
multiplication diagrams with matrix multiplication Matn(k[t]) x (k[t])n--->(k[t])n, corresponding 
to polynomial multiplication Matn(k)[t] x kn[t] ---> kn[t]. 
 
Now we can prove the main presentation theorem. 
 
Theorem:  Given any n by n matrix A over a field k, defining a k[t] module structure on kn, the 
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k[t] module map (k[t])n--->kn, sending ∑ fi(t)Ei to ∑ fi(A)ei, is surjective, and its kernel is a free 
k[t] module, freely generated by the columns of [tI-A], the characteristic matrix of A.   I.e. this 
sequence is exact: 0--->(k[t])n--->(k[t])n--->kn--->0, as k[t] - modules, where the left map is 
multiplication by [tI-A]. 
proof:  We know the last map is surjective. 
 Recall the right map takes ∑fi(t)Ei to ∑fi(A)ei, which is exactly the result of viewing 
∑fi(t)Ei as a polynomial ∑fi(t)ei with coefficient vectors in kn, and then setting t = A.  So if we 
view these as maps of polynomials kn[t]--->kn[t]--->kn--->0, the right map kn[t]--->kn, is left 
evaluation of a polynomial f(t) with vector coefficients, at t = A.  By the factor theorem above, 
this is zero if and only if f(t) is left divisible by (t-A), i.e. if and only if f(t) is in the image of the 
left hand map kn[t]--->kn[t].   
 Since multiplication by a monic polynomial never sends a non zero polynomial to zero, 
the left map is injective.  Hence the sequence 0--->(k[t])n--->(k[t])n--->kn--->0 is exact, and  
(tI-A) is indeed a presentation matrix for the module (kn,A).  QED. 
 
The following amazing theorem, generalizes the fact a surjective endomorphism of a finite 
dimensional vector space is also injective. 
Theorem: If R is any commutative ring and X a finitely generated R module, any surjective R 
module map f:X--->X is an isomorphism. 
proof: This follows from the proof of Cayley Hamilton.  If x1,...,xn are generators and if we 
write f(xj) = ∑i aij xi, then as in a previous proof, the matrix A represents f for the generators 

{xi} even if not independent, and look at the matrix  M = 

A ! a
11

!a
12

... !a
1n

!a
21

A ! a
22

... !a
2 n

. . .. ... ..

!a
n1

!a
n2

... A ! a
nn

" 

# 

$ 

$ 

$ 

% 

& 

' 

' 

' 

.  

Again the transpose 
 

Mt = 

A ! a
11

!a
21

... !a
n1

!a
12

A ! a
22

... !a
n 2

. . .. ... ..

!a
1n

!a
2n

... A ! a
nn

" 

# 

$ 

$ 

$ 

% 

& 

' 

' 

' 

, annihilates the column of vectors 

e
1

e
2

. ..

e
n

! 

" 

# 

# 

# 

$ 

% 

& 

& 

& 

  

 
 
 Again the determinant of tI-A is a polynomial P(t) over R annihilating the matrix A and 
hence the map f.  As a small refinement: note if the image f(X) of the map f lies in the submodule 
IX, for some ideal I of R, then we can choose the entries aij to belong to I, and looking at the 
determinant formula for P shows the coefficient of ti in P(t) belongs to the power In-i of the ideal 
I, where n = degree of P(t). 
 
 Now apply the principle just proved, not to f, but to the map Id:X--->X where X is 
viewed not as an R module, but as an R[t] module where t acts via t = f.  Then the image of Id is 
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all of X, which equals (t)X, the product of X by the ideal (t) in R[t].  Hence we have a 
polynomial satisifed by Id as follows:  Idn + c1f.Idn-1 + .....+cn-1fn-1.Id + cnfn = 0, where each 
cifi belongs to the ideal (f) in R[f].  But we can solve this for Id, getting Id =  
-[c1f.Idn-1 + .....+cn-1fn-1.Id + cnfn ] = f [-c1.Idn-1 - .....-cn-1fn-2.Id - cnfn-1].  The polynomial 
expression on the right is a right inverse for f, and since all its terms are polynomials in f, it 
commutes with f, hence is also a left inverse.  QED. 
 
 
 We have not said how to find bases for kn which put a given matrix A into rational 
canonical form.  Although in theory one could presumably do it by keeping track of the 
diagonalization steps, as they do in DF, this seems unappealing.  I.e. given A there exist 
invertible Q such that (Q-1AQ) is in canonical form, but it seems tedious to find such Q in 
practice.   
 
 We will undertake this job only in the simplest possible case, i.e. for nilpotent matrices.  
We will find it already quite tedious enough there.  It is worthwhile however, as in that case it 
leads to finding so called “Jordan” matrices, a slight variation on the rational canonical form. 
 
Nilpotent matrices, and Jordan canonical forms 
 Since the companion matrix of a polynomial contains the coefficients of the minimal 
polynomial of the matrix, it will be as simple as possible when those coefficients are all zero.  
That happens if and only if the minimal poynomial is tr for some r, i.e. for operators T such that 
Tr = 0, for some r.  We call these operators nilpotent.  The Jordan form is a trick to produce a 
matrix for a general operator in terms of rational canonical matrices of nilpotent operators.   
 It only works when the characteristic polynomial of T factors completely into linear 
factors over the field k, but every field has an extension where this holds, as we will learn soon.  
In fact universal such field extensions of k exist where every polynomial over k factors 
completely, e.g. the complex numbers do this for matrices over Q or R. 
 
Rational canonical form of a cyclic nilpotent matrix 
 Let T:V--->V be a linear operator whose associated k[t] module structure is isomorphic to 
the cyclic module k[t]/(tn), with annihilator tn.  Then T is nilpotent of index n = dim(V).  In the 
standard k basis {[1], [t], [t2], ....,[tn-1]} for the vector space k[t]/(tn), the matrix for t has the 
following rational canonical form, say when n = 5: 
 
0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

! 

" 

# 

# 

# 

# 

$ 

% 

& 

& 

& 

& 

  This nilpotent matrix M, with M5 = [0], corresponds to  

 
the module k[t]/(t5), with annihilator t5.  Equivalently, there is some basis for V, in which T has 
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this same matrix.  This is about as simple as a rational canonical matrix can get.  We want to 
extend the range of this observation. 
 
A cyclic Jordan block 
 Suppose T:V--->V defines a module structure isomorphic to the cyclic module  
k[t]/((t-c)n), almost as simple as before, with annihilator (t-c)n.  In spite of the similarity of these 
two cases, the rational canonical matrix is now quite terrible, being the following matrix for n = 5: 
 
0 0 0 0 !c 5

1 0 0 0 5c
4

0 1 0 0 !10c 3

0 0 1 0 10c
2

0 0 0 1 !5c

" 

# 

$ 

$ 

$ 

$ 

% 

& 

' 

' 

' 

' 

.   This will never do.  But the solution is almost obvious. 

 
 Namely, we should have looked at the matrix for (T-c) instead of the matrix for T.  I.e. if 
T satisfies the polynomial (t-c)n, then (T-c) satisfies the polynomial tn, i.e. (T-c) is nilpotent 
even though T is not.  So we should have taken the rational canonical matrix for T-c, instead of 
for T.  This means we get the module structure k[X]/(Xn) for V, where multiplication by X is 
action by T-c, hence the standard basis {[1], [X], [X2],...,[Xn-1]} for k[X]/(Xn), corresponds to 
the basis {[1], [(t-c)], [(t-c)2], ..... , [(t-c)n-1]} for k[t]/((t-c)n). 
 The latter is a cyclic basis for (T-c), and in that basis the (rational canonical) matrix for 
(T-c) is the standard nilpotent matrix above for n=5.  But we want a matrix for T, not (T-c).  
This however is trivial, since T = cI+(T-c).  Now cI is so simple it has a diagonal matrix in any 
basis at all, so if we use the rational canonical basis for (T-c) just chosen, in that basis, T has the 
following Jordan matrix (where n=5): 
 
c 0 0 0 0

1 c 0 0 0

0 1 c 0 0

0 0 1 c 0

0 0 0 1 c

! 

" 

# 

# 

# 

# 

$ 

% 

& 

& 

& 

& 

  This is the sum of the rational canonical matrix for (T-c), 

 
plus the rational canonical matrix for cI.  A more general Jordan matrix is composed of blocks like 
this.   
 
A nilpotent matrix with more than one block 
  If T:V--->V defines a module structure on V isomorphic to a product of cyclic 
modules of form (k[t]/(tr1)) x ....x (k[t]/(trm)), then T is nilpotent of index r = rm, i.e. tr 
annihilates the module, and is the minimal polynomial for T.  Then the rational canonical matrix 
for T consists of exactly m blocks of nilpotent cyclic matrices, of sizes r1,...,rm.  E.g. the 
following illustrates the case (k[t]/(t2)) x (k[t]/(t3)): 
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0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

! 

" 

# 

# 

# 

# 

$ 

% 

& 

& 

& 

& 

  Note it has lower rank than the nilpotent matrix M above. 

 
A matrix of Jordan blocks all with the same eigenvalue 
 The analog of the previous nilpotent matrix is an operator T with minimal polynomial (t-
c)r, where r < n = dim(V), and as a module V is a product [k[t]/((t-c)r1)] x ... x [k[t]/((t-c)rm)], 
with r1 ≤ r2 ≤ .....≤ rm = r.  The Jordan matrix for this T is obtained from that for the nilpotent 
version, by putting c's everywhere on the diagonal.  If V ≈ k[t]/(t-c)2 x k[t]/(t-c)3, we have the 
following Jordan matrix for T: 
 
c 0 0 0 0

1 c 0 0 0

0 0 c 0 0

0 0 1 c 0

0 0 0 1 c

! 

" 

# 

# 

# 

# 

$ 

% 

& 

& 

& 

& 

.  Note this matrix has full rank if c ≠ 0. 

 
In general, if the minimal polynomial for T is ∏ (t-ci)ri, there will be some blocks with c1 on the 
diagonal, the largest of which are of size r1, some blocks with c2 on the diagonal the largest being 
of size r2, etc... The only thing to be determined is how many blocks exist of each size, for each 
eigenvalue c. 
 
Exercise:  a) If the minimal polynomial is ∏(t-ci), and the characteristic poloynomial is  

∏(t-ci)si, the Jordan matrix of is diagonal, with si diagonal entries equal to ci for each i.   

b) Conversely, if the Jordan matrix is diagonal, and the characteristic polynomial is ∏(t-c)si, then 
the minimal polynomial is ∏(t-ci). 
c) If there is only one Jordan block for each eigenvalue, then the characteristic and minimal 
polynomials are equal. 
 
Our discussion shows the following: 
Theorem: If T:V--->V has characteristic polynomial chT(t) = (t-c)n, i.e. if there is only one 
characteristic root, then (T-c) is nilpotent, and the matrix of T in some basis consists of one or 
more Jordan blocks, all with c on the diagonal.  The determinant of T is cn, and the trace is nc. 
 
Existence of Jordan form 
The general theorem is the following: 
Theorem: Let T:V--->V is a linear endomorphism of a finite dimensional vector space V over k, 
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whose characteristic polynomial factors completely into linear factors, i.e. chT(t) = ∏(t-ci)ri, 
i=1,...,m; with all roots c1,...,cm in k.  Then V is a product of m subspaces V =  
V1 x....x Vm, such that the restriction Ti of T to each Vi, has form Ti = ciI + Ni where Ni is 
nilpotent.  Consequently, there is a basis for each Vi, and hence for V, in which the matrix of T is 
composed of Jordan blocks. 
Proof:  If m = 1, i.e. there is only one eigenvalue, we have already seen this is true, i.e. no 
decomposition of V is needed.  So assume there are at least two distinct linear factors of chT(t) = 
∏(t-ci)ri, i=1...m. 
 Define Vi = {those w in V such that (t-ci)ri(w) = 0} = the generalized eigenspace of T for 
the eigenvalue ci.  Define the natural map ∏Vi--->V taking (w1,...,wm) to ∑wi.  We claim this is 
an isomorphism.  This is an easy Euclidean algorithm argument as follows. 
   Let Qi = ∏(t-cj)rj, i ≠ j.  Since m ≥ 2, there are at least two Qj, and they have no common prime 
factor in k[t].  Hence the ideal they generate in the pid k[t] is the unit ideal, so there exist 
polynomials Pi such that ∑PiQi = 1.  Now suppose taking (w1,...,wm) is in the kernel of the 
map above.  Then ∑wi = 0, so w1 is a linear combination of the wj's with j > 1.  But w1 is 
annihilated by (t-c1), hence by all Qj with j > 1; and all wj with j > 1 are annihilated by Q1.  
Hence (∑PiQi)(w1) = 0.  But ∑PiQi = 1, so (∑PiQi)(w1) = w1.  Similarly we see all wi = 0, and 
our map is injective. 
 For surjectivity, let w be any element of V and apply the equation ∑PiQi = 1, to w, 
(using commutativity), getting ∑(QiPi)(w) = ∑(PiQi)(w) = w.  But Qi(u) is annihilated by  
(t-ci)ri, so any vector in the image of Qi belongs to Vi.  Thus the equation ∑(QiPi)(w) = w, 
shows every vector w is a sum of vectors (w1,....,wm) from the product ∏Vi.  Hence our map is 
surjective. 
QED. 
 
 Now the existence of Jordan form is proved, and the uniqueness also follows from the 
uniqueness for rational form.  If we subtract off the diagonal terms from the Jordan form for T, 
we get a nilpotent matrix, so it follows tool that every T whose minimal polynomial has 
only linear factors, can be written as a sum T = S+N where, S is diagonalizable, N is nilpotent, 
and in fact SN = NS.  Such S and N are also unique. 
 
 At last we bring up the task we have been avoiding, actually computing a basis which 
puts T into Jordan form.  We will start with the easiest case, nilpotent matrices and see why it is 
already not so easy. 
 
 Look at the module (V,T) ≈ k[t]/(tn) and consider the standard cyclic basis for the 
standard model, namely {[1],[t],....,[tn-1]}.  We started with the generator [1], and just applied t 
to it n-1 times.  So to get a cyclic basis for V, all we need is a T cyclic generator corresponding to 
[1].  But how to find one?  I.e. we need a vector w in V such that Tnw = 0, but Tn-1w ≠ 0.  So 
we need to find a basis for the space kerTn-1, and then choose a vector w not belonging to it. 
 It is not always obvious how to choose a vector not belonging to the span of a given set, 
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although statistically speaking, over R say, any vector chosen at random has probability 1 of 
working.  An algorithm that will always work is to let v1,.....,vs be given, and let e1,...,en be a 
basis for the whole space.  Then reduce the ordered spanning set {v1,...,vs,e1,...,en} to a basis 
starting from the left and discarding any vector which depends on those to its left.  Then any ej 
remaining afterwards will not be in the span of the v's.  This can be done with matrices by 
Gaussian elimination. 
  So to find a cyclic generator for V in case the minimal polynomial of T is tn and n 
= dimV, we find a basis v1,...,vn-1 for kerTn-1, and then use some such procedure to find a 
vector w not in that kernel.  Then the rational canonical matrix is obtained from the cyclic basis 
{w,Tw,T2w,...,Tn-1w}.  Similarly, if the minimal polynomial is (t-c)n, we find a basis of  
ker(T-c)n-1, and then find a vector not in that kernel. 
 
 Of course we usually have a more complicated situation in practice, since we may only 
know the characteristic polynomial and it may not equal the minimal polynomial.  So we have 
more than one cyclic block, hence we are looking for more than one cyclic generator, and the 
cyclic blocks have different sizes. 
 
 We proceed as follows, by example:  suppose ker(T-c) has dimension d1, then there are 
exactly d1 Jordan blocks with c on the diagonal.  If ker(T-c)2 has dimension d1+d2, then d2≤ d1, 
and there are exactly d2 blocks of size larger than one,  hence exactly d1-d2 blocks of size one.  If 
ker(T-c)3 has dimension d1+d2+d3, then d3 ≤ d2, there are exactly d3 blocks of size greater than 
2, hence exactly d2-d3 blocks of size two.....Once the dimension of ker(T-c)r equals that of 
ker(T-c)r+1, then there are no blocks larger than r, and we are done with determining the sizes of 
the blocks for the eigenvalue c.  We still need to show how to compute a Jordan basis for this 
generalized eigenspace. 
 
Here are some actual prelim problems of this nature: 
 
"Put the following matrix in Jordan form": 
 

 T = 
1 2 3

1 0 !3

!1 !1 2

" 

# 

$ 

$ 

% 

& 

' 

' 
.  We need to know the characteristic polynomial.  With a 3by3 it should be 

feasible to compute it directly by the determinant.  Ok, I got ch(t) = (t+1)(t-2)2.  Since (t+1) 
occurs with multiplicity one, there is exactly one block, and it has size one.  Solving for vectors in 
the kernel of (T+1), gives [1,-1,0], by Gausian elimination.  This is a keeper. 
 
 

T-2 = 
!1 2 3

1 !2 !3

!1 !1 0

" 

# 

$ 

$ 

% 

& 

' 

' 
.  We need a vector in this kernel. 
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 It has rank 2, so again get only one, e.g. [1,-1,1].  Hence this is not a cyclic generator for 
this subspace, since we want a vector annihilated by (T-2)2 but not by (T-2).  So we square  
(T-2), getting: 
 

(T-2)2 = 
0 !9 !9

0 9 9

0 0 0

" 

# 

$ 

$ 

% 

& 

' 

' 
,  so a basis for the kernel, is {[1,0,0], [0,1,-1]}.  We want one which does 

not lie in ker(T-2).  Applying T-2 to the first, it is not zero, so we take it.  Now we have our 
cyclic generalized eigenvector, so our cyclic basis for that space is [1,0,0], and (T-2)([1,0,0]) =  
[-1,1,-1].  Thus our Jordan basis seems to be {[1,-1,0]; [1,0,0], [-1,1,-1]}.  The matrix Q with 
these as columns should conjugate our matrix T into Jordan form, if all is well. 
 

I.e. we should have Q-1TQ = J = 
!1 0 0

0 2 0

0 1 2

" 

# 

$ 

$ 

% 

& 

' 

' 
, or another ordering of blocks. 

 

Multiplying gives TQ =  
1 2 3

1 0 !3

!1 !1 2

" 

# 

$ 

$ 

% 

& 

' 

' 

1 1 !1

!1 0 1

0 0 !1

" 

# 

$ 

$ 

% 

& 

' 

' 
 = 

!1 1 !2

1 1 2

0 !1 !2

" 

# 

$ 

$ 

% 

& 

' 

' 
. 

 

Now QJ = 
1 1 !1

!1 0 1

0 0 !1

" 

# 

$ 

$ 

% 

& 

' 

' 

!1 0 0

0 2 0

0 1 2

" 

# 

$ 

$ 

% 

& 

' 

' 
 = 

!1 1 !2

1 1 2

0 !1 !2

" 

# 

$ 

$ 

% 

& 

' 

' 
.  Since TQ = QJ, thus J = Q-1TQ. 

 
 

Now let A = 

0 0 !1 2

1 1 1 !3

1 0 2 !3

0 0 0 1

" 

# 

$ 

$ 

$ 

% 

& 

' 

' 

' 

 and try it again.  We want the characteristic roots, but this time 

lets diagonalize the characteristic matrix. 
 

(tI-A) = 

t 0 1 !2

!1 t !1 !1 3

!1 0 t ! 2 3

0 0 0 t !1

" 

# 

$ 

$ 

$ 

% 

& 

' 

' 

' 

.  Diagonalizing it, yields the following: 
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1 0 0 0

0 1 0 0

0 0 (t !1) 0

0 0 0 (t !1)3

" 

# 

$ 

$ 

$ 

% 

& 

' 

' 

' 

.  Thus we have the characteristic polynomial = (t-1)4,  

 
the minimal polynomial = (t-1)3, and we know the Jordan form has one cyclic block of size 1, 
and one cyclic block of size 3.  So we need to find two independent vectors u,v  in ker(T-1).  
Then we need to find a vector w in ker(T-1)3 that is not in ker(T-1)2.  Then we check to see 
which of u,v, is niot sdependent on (T-1)2w, say u is not.  Then our Jordan basis will consist of 
{u, w, (T-1)w, (T-1)2w}.  I.e.  {u, (T-1)2w} is then a basis for ker(T-1), while {u, (T-1)w,  
(T-1)2w} is a basis for ker(T-1)2.  The increase in dimension by one, from 2 to 3, tells us there is 
exactly one block of size 2 or more.  Then {u, w, (T-1)w, (T-1)2w} is our full Jordan basis for V 
= ker(T-1)3.  We need to solve the equations of course. 
 
Since it already midnight, this is an exercise. 
 
8000 spectral theorems. 
 A spectral theorem is a theorem guaranteeing certain special operators or matrices are 
diagonalizable, without having to actually diagonalize them, or even calculate any characteristic 
polynomials.  Roughly, "symmetric" operators are always diagonalizable. 
 A hermitian product on a complex vector space is a bi - additive pairing VxV-->C with 
values in the complex numbers C, such that v.w = conj(w.v) ["conjugate symmetric"], and (av).w 
= a(v.w) and v.(bw) = conj(b)(v.w).  So the pairing is one and a half times complex linear, or 
"sesquilinear".  It follows that for all v in V, v.v = (conj(v.v) is real.  We assume v.v > 0 for all 
non zero v, i.e. the pairing is positive definite.   
 A hermitian pairing thus defines a length by |v|^2 = v.v.  We call the space V equipped 
with the given hermitian pairing, a hermitian space. 
 
 An endomorphism A:V-->V is "hermitian" for a given pairing if (Av).w = v.(Aw) for all 
v,w in V.  A pair of vectors is orthogonal for the given pairing if v.w = 0.  Then we have: 
 
Spectral theorem (complex hermitian case) 
Theorem:  If A:V-->V is a hermitian endomorphism on a finite dimensional hermitian space V, 
then V has an orthogonal basis of eigenvectors for A, hence also an orthonormal such basis. 
 
 Indeed this is more than we need to assume.  The more general statement is this:  consider 
the map V-->Hom(V,C) defined by sending v to ( ).v.  This is well defined since the pairing is 
complex linear in the left variable.  Moreover, since v.v = 0 implies v  = 0, the map is injective, 
and conjugate linear, hence bijective.  Thus every linear map f in Hom(V,C) determines a unique 
vector v such that f(w) = w.v for all w.  In particular, given any endomorphism A, and any vector 
v, the linear map f(w) = (Aw).v has form w.y for some unique y, which we call A*v.  Then the 
function sending v to A*v, is complex linear.  So A* is an endomorphism called the (hermitian) 
adjoint of A.   
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 Then we claim that the conclusion of the theorem holds if and only if AA* = A*A, and 
call such A normal.  I.e. the operators that commute with their hermitian adjoints are exactly the 
ones that admit orthonormal eigenbases.  The easy direction is that if there is an orthonormal 
basis in which A has diagonal matrix, then in that same basis the matrix of A* is also diagonal, 
hence these matrices commute, so also A and A* commute as operators in any basis. 
 
Spectral theorem (normal case) 
Theorem:  If A:V-->V is a normal endomorphism on a finite dimensional hermitian space V, 
then V has an orthogonal basis of eigenvectors for A, hence also an orthonormal such basis. 
Proof:  
 
Lemma:  If A is normal, then A and A* have the same kernel.  
proof:  Assume Ax = 0.  To show A*x  = 0 it suffices to show its length is zero.  But 
(A*x).(A*x) = x.(AA*x) = x.(A*Ax) = (Ax).(Ax) = 0.  So A*x  = 0. QED. 
 
Cor:  If A is normal, with eigenvalue c, then A maps the ortho - complement of the eigenspace 
ker(A-c) into itself. 
proof:  If A is normal, then so is (A-c), as one checks directly.  Then ker(A-c) = ker(A*-c*) 
where c* = complex conjugate of c.  Hence if x is in ker(A-c), then also (A*-c*)x = 0.  Thus if y is 
orthogonal to x, i.e. if y.x = 0, then (A-c)y.x = y.(A*-c*)x = 0, so (A-c)y is also orthogonal to x.  
But then 0 = (A-c)y.x = Ay.x - cy.x = Ay.x - 0, so Ay.x = 0 too.  I.e. Ay is also orthogonal to x.  
QED. 
 
Now we construct an orthogonal eigenbasis for V by induction.  I.e. the characteristic polynomial 
for A has a complex root and hence there is a corresponding eigenvector x1, which we may scale 
down to length one.  Now if we restrict A to the ortho complement of <x1>, the restriction of A 
is again normal and maps that smaller subspace into itself.  Thus by induction there is an 
orthonormal eigenbasis of this smaller subspace.  Combined with x1, we have an orthonormal 
eigenbasis for V.  QED. 
 
Examples:  An operator A is called hermitian if A = A*, unitary if A^(-1) = A*, and a real 
operator is called symmetric if A = A* for some real inner product.  Hermitian and unitary 
operators are examples of normal operators, hence they have orthonormal eigenbases. 
 
Remark: If A is hermitian, the characteristic polynomial of A has all real roots, i.e. ch(A) always 
splits over the reals. 
proof:  If Av = cv, then c(v.v) = (cv).v = (Av).v = v.(Av) = v.(cv) = c*(v.v), and since v ≠ 0, c = 
c*, so c is real. 
 
 A real symmetric operator is in a sense an example of a hermitian operator on the 
"complexification" of the real space, and the theorem holds again.  But we give an independent 
proof in the real case, from my linear algebra notes.  The only difference is in the first step, where 
we cannot use the characteristic polynomial to rpoduce the first eigenvector, since we do not 
know it has a real root. 
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The transpose of a matrix, symmetric matrices. 
Defn: An n by n matrix A is symmetric if the entry in the ith column and jth row equals the 
entry in the jth column and ith row, for every i and j.  
The matrix A* obtained from A by interchanging its rows and columns is called the transpose of 
A.   Thus A is symmetric if and only if A = A*. 
 
Ex: i) If the operations are defined, (A+B)* = A* + B*, and (AB)* = B*A*. 
ii) If A is any m by n matrix, and v, w are any vectors in Rn, Rm respectively, then v.(A*w) = 
(Av).w.   
iii) If A = A*, then Av.w = v.Aw, for all v,w. 
 
Spectral theorem (real symmetric case) 
Thm: If A = A*, Rn has a basis of mutually orthogonal eigenvectors of A. 
Pf: The real valued function f(x) = Ax.x has a maximum on the unit sphere in Rn, at some point y 
where the gradient df of f is "zero", i.e. df(y) is perpendicular to the tangent space of the sphere 
at y. The tangent space at y is the subspace of vectors in Rn perpendicular to y, and df(y) = 
2Ay.  Hence Ay is perpendicular to the tangent space at y, i.e. Ay = 0 or Ay is parallel to y, so 
Ay = cy for some c, and y is an eigenvector for A. 
 Now restrict A to the subspace V of vectors orthogonal to y.  If v.y = 0, then Av.y = 
v.Ay = v.cy = c(v.y) = 0.  Hence A preserves V.  A still has the property Av.x = v.Ax on V, so 
the restriction of A to V has an eigenvector in V.  (Although V has no natural representation as 
Rn-1, the argument for producing an eigenvector depended only the symmetry property Av.x = 
v.Ax.) Repeating, A has an eigenbasis. QED. 
 
 
Dual spaces and pairings 
One can discuss pairings in a more abstract setting, without making any choices, simply by 
considering vectors in a space V over a field k, together with “covectors” or dual vectors, i.e. 
elements of the function space V* = Hom(V,k) = {k linear functions Vk}.  Here there is a 
natural pairing, not between elements of the same space. But between pairs of elements of V and 
V*.  I.e. by the very definition of elements of V* there is a natural”evaluation”  pairing VxV*k, 
taking (v,f) to f(v).  The function space V* is called the “dual space of V”. 
 
To add to the confusion, we can consider the double dual V** = (V*)*, and the natural map 
VV**, taking v to v** = “evaluation at v”, which of course is a linear map v**:V*k, taking f 
to v**(f) = f(v).  If v ≠ 0, it follows from choosing a basis of V containing v, that there is some f 
with v**(f) ≠ 0, namely f = projection of a vector w on its v- coefficient in that basis.  Thus the 
map VV** is always injective, and hence also surjective in case V has finite k dimension.  Thus 
in fin ite dimensions, V and V** are essentially the same, although this is not true for V and V*.  
I.e. although we will see that V and V* have the same dimension when those are finite, there is no 
natural way to identify them, and they deserve to be distinguished. 
 
It is “obvious” that V and V* are different since there is a natural pairing between them, so if V 
and V* were naturally the same there would always be a natural pairing of V with itself.  On the 
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other hand, once we specify a pairing on V, then V and V* do become related, or even identified 
for some purposes, by means of that pairing. 
 
I.e. suppose we are given a pairing VxVk which is bilinear, i.e. for every u,v,w in V, and a in k, 
we have <u+v,w> = <u,w> + <v,w>, <u,v+w> = <u,v> + <u,w>, and <av,w> = a <v,w> = 
<v,aw>.  Then the map VV* taking v to < . ,v>, is linear.  If the pairing is non degenerate, in 
the sense that <u,v> = 0 for all u only when v = 0, the map VV* is injective, hence also 
bijective if V has finite k dimension, which allows us to identify V and V* for some purposes. 
 
For example, if V is an n dimensional real vector space, and we have a usual “inner product” on 
V, i.e. a symmetric, bilinear, “positive definite” pairing [i.e. v.v  >  0 for all v ≠ 0], this yields an 
isomorphism VV*, taking v to (  ).v. 
 
[If V has infinite k dimension, then I believe V* has still larger infinite dimension, and in 
particular they are never isomorphic in the infinite dimensional case.  Thus also V and V** are 
not isomorphic when V has infinite dimension, if I am correct.  (I have not written the proof.)] 
 
Conversely if we are given a linear map VV* taking v to the linear function (  ).v, we can 
consider this a pairing on V, by defining  <w,v> = (w).v.  This pairing will be bilinear, but not 
necessary symmetric or non degenerate.  So it seems that bilinear pairings VxVk are equivalent 
to linear maps VV*, and non degenerate pairings are equivalent to linear injections VV*.  We 
will discuss below how to recognize those maps VV* that correspond to symmetric, or skew 
symmetric, pairings. 
 
Abstract orthogonal complements and transposes 
Given a vector space V over a field k, and a subspace W of V, define the orthogonal complement 
Wperp in V* to be the subspace of those linear functions in V* which are identically zero when 
restricted to W.  As usual, these are naturally identified with precisely all linear functions in 
(V/W)*, i.e. a linear function V/Wk defines by composition one VV/Wk, and conversely a 
linear function Vk which annihilates W induces one V/Wk.  So Wperp is a subspace of V* 
which is naturally isomorphic to (V/W)*. 
 
If V has finite dimension, then dim(V) = dim(W) + dim(V/W) = dim(W) + dim(V/W)* 
= dim(W) + dim(Wperp), which is the usual formula for the dimensions of a subspace and its 
orthogonal complement in Euclidean space. 
 
There is also an abstract analog of the transpose of a map T:VW, namely T* is the map 
T*:W*V* taking a linear function f:Wk in W*, to the composition (foT):VWk in V*.  
Confusing isn’t it?  Anyway, T* just means “precede by T”.  That’s often what upper star 
means, in algebraic topology, functional analysis, and elsewhere. 
 
Do this again and, from T:VW, you get a map T** = (T*)*:V**W**.  Now remember the 
natural map VV*?  That means whenever you have a map T:VW, that now you also have 
maps VWW**, and VV**W**, and we claim you can check these compositions are 
equal.  In category language, this says there is a “natural transformation” between the identity 
and the double dual operations (such operations are called functors there). 
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It now makes sense to speak of symmetric or skew symmetric operators in an abstract sense, at 
least for the special case of maps T:VV*.  I.e. then T*:V**V*, so this provides a natural 
map VV**V* to compare with T:VV*.  If they are equal we say the map T was 
symmetric, or if they are negatives of each other, call T skew symmetric. 
 
I guess it will follow that bilinear pairings VxVk that are symmetric (or skew symmetric) in the 
usual sense, yield maps VV* which are symmetric (or skew symmetric) in the abstract sense, 
and vice versa.  You might try checking that, to see if you have some facility with the definitions. 
 
Dual bases and matrices 
To see how the abstract transpose relates to the matrix transpose, we have to introduce bases.  
So let V be finite dimensional with basis v1,…,vn.  Then we can define linear functions f1,…,fn 
on V, by setting f1 = 1 on v1 and = 0 on the other basis elments, then setting f2 = 1 on v2, and = 
0 on the other basis elements, and so on.  These n functions are independent an span V*, and are 
called the basis for V* dual to the original basis for V.  Note that we must know the whole basis 
for V to define even one of the f’s, so the individual elements of the basis for V* are not dual just 
to the corresponding element of the basis for V, but the whole basis is dual to the whole other 
basis.  Thus although sometimes we write the basis dual to v1,…,vn as v1*,…,vn*, this is a bit 
misleading, since for example v1* depends on v1,…,vn and not just v1. 
 
Anyway a basis for V, also defines a map VV* sending  each vi to vi*.  Thus this map defines 
a pairing on V.  We claim the basis v1,…,vn is orthonormal for this pairing.  Vice versa, if we 
have a pairing on V and consequently a map VV*, we can ask whether that map sends a given 
basis for V to its dual basis, and the answer should be that it does if and only if the basis is 
orthonormal for the given pairing? 
 
Now if T:VW is a linear map of finite dimensional spaces with matrix A in some bases for V 
and W, then T*:W*V* also has a matrix in terms of the corresponding dual bases, which we 
claim is the usual transpose of A.  To see that, just recall how you find the elements of a matrix 
in terms of a basis: namely the i,j entry is the ith coeficient of the image of the jth basis vector.  
So let the basis of V be denoted by v’s, that of W be w’s, and the dual bases be f’s and g’s.  Thus 
the i,j entry of the matrix for T* is the ith coefficient of T*( gj), i.e. T*( gj)(vi ) = gj(T(vi )), 
which is the jth coefficient of the image of the ith basis vector under T.  So the i,j entry of A* is 
the j,i entry of A.  See if you can convince yourself of that. 
 
 
Suppose we have a map T:VV* which is symmetric in the abstract sense, that is: T = 
T*:V**=VV*.  Should the spectral theorem hold?  What would it say?  That there is a basis 
for V such that T becomes diagonal in terms of that basis and its dual basis?  Presumably not, or 
there would be such an abstract version in every book.  The first step would be to show that if 
T≠0, then for some v, T(v) is not zero on v, so that T(v) could be a multiple of v* for some basis 
of V containing  v.  Can you find a counterexample? 


