## Qualifying Examination in Algebra, January 2008

- 1. Let G be a group. Let  $H \triangleleft G$  and  $K \triangleleft G$  be distinct normal subgroups such that G/H and G/K are simple. Prove that  $G/K \simeq H/(H \cap K)$ .
- 2. State the decomposition theorem for finitely generated modules over a principal ideal domain, and use it to classify abelian groups of order 72.
- 3. Find the Galois group of  $x^4 2$  over  $\mathbb{Q}$ . That is, find generators and relations for the Galois group, and state how those generators act on a set of generators of the splitting field.
- 4. Let R be a domain. Prove that the following are equivalent:
- a) For every positive integer n, every submodule  $M \subset \mathbb{R}^n$  is free.
- b) R is a principal ideal domain.

(Hint: Consider the exact sequence  $0 \to R^{n-1} \to R^n \to R \to 0$ .)

- 5. Let G be a group of order  $3p^k$ , where p is a prime number and  $k \ge 1$ . Prove that G is not simple. Be sure to consider all cases.
- 6. Let  $f(x) \in \mathbb{Z}[x]$  be a monic polynomial of degree 4. Assume that for all  $n \in \mathbb{Z}$ ,  $f(n) \neq 0$ . Assume also that f(0) is even, and f'(0) and f(1) are odd. Show that f is irreducible in  $\mathbb{Q}[x]$ . (Hint: Consider the reduction of f modulo 2.)
- 7. Let k be an algebraically closed field. Let  $G = GL_n(k)$  be the group of invertible  $n \times n$  matrices over k, let Y be the set of all  $n \times n$  matrices over k, and let  $X \subset Y$  be the set of nilpotent  $n \times n$  matrices.
- i) Give the definition of a group acting on a set.
- Show that G acting on Y by conjugation satisfies the definition of group action, and that X is G-stable.
- iii) Show that X has finitely many G-orbits.
- iv) Show that the two matrices

belong to the same orbit.

- 8. Let F be a field of characteristic zero.
- i) Let  $N_i$ , i = 1, 2, be finite Galois extensions of F. Explain why it makes sense to speak of the field generated by  $N_1$  and  $N_2$ , even if  $N_1$  and  $N_2$  are defined only up to isomorphism. Show furthermore that the field generated by  $N_1$  and  $N_2$  is Galois.
- ii) For  $f \in F[x]$ , let  $E_f$  denote the splitting field of f over F. Let f and g be polynomials over F, such that  $E_f \cap E_g = F$ . Prove that  $F[\alpha + \beta] = F[\alpha, \beta]$ , where  $\alpha, \beta$  are roots of f and g respectively.