ALGEBRA QUALIFYING EXAM, SPRING 2011

- (1) Let E/F be a Galois extension with Galois group G, and suppose that [E:F]=28. Suppose that there exists an intermediate field $F\subset K\subset E$ with [E:K]=4 and K/F Galois.
 - (a) Show that G is abelian.
 - (b) Show that for **every** intermediate subfield $F \subset L \subset E$, L/F is Galois.
- (2) Let G be a finite group and p a prime number. Let X_p be the set of Sylow p-subgroups of G and let n_p be the cardinality of X_p . Let $\operatorname{Sym}(X_p)$ be the permutation group on the set X_p , i.e., the set of all bijections from X_p to X_p .
 - (a) Construct a homomorphism $\rho: G \to \operatorname{Sym}(X_p)$ with image a transitive subgroup (i.e. with a single orbit).
 - (b) Deduce that if G is simple, $\#G \mid n_p!$.
 - (c) Show that for any $1 \le a \le 4$ and prime power p^k , no group of order ap^k is simple.
- (3) Let R be an integral domain with fraction field K. Consider the following two properties:
 - (i) The intersection of all nonzero prime ideals of R is nonzero.
 - (ii) There exists $x \in R$ such that $K = R[\frac{1}{x}]$.
 - (a) Show that (i) implies (ii).
 - (b) Let k be any field, and let R be the polynomial ring k[t]. Show that R does not satisfy (ii).
- (4) Suppose that R is a principal ideal domain and $I \triangleleft R$ is an ideal. If $a \in I$ is an irreducible element, show that I = Ra.
- (5) Suppose that R is a commutative ring. Show that an element $r \in R$ is not invertible if and only if it is contained in a maximal ideal.
- (6) Let $K \subset L \subset M$ be a tower of finite degree field extensions. In each of the following parts, either prove the assertion or give a counterexample (with justification!).
 - (a) If M/K is Galois, then L/K is Galois.
 - (b) If M/K is Galois, then M/L is Galois.
- (7) Let $x, y \in \mathbb{C}$ and consider the matrix $M = \begin{bmatrix} 1 & 0 & x \\ 0 & 1 & 0 \\ y & 0 & 1 \end{bmatrix}$.
 - (a) Show that $v = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^t$ is an eigenvector of M.
 - (b) Compute the rank of M as a function of x and y.
 - (c) Find all values of x and y for which M is diagonalizable.
- (8) Suppose that V is a 6-dimensional vector space and that T is a linear transformation on V such that $T^6=0$ and $T^5\neq 0$.
 - (a) Find a matrix for T in Jordan canonical form.
 - (b) Show that if S, T are linear transformations on a 6-dimensional vector space V which both satisfy $T^6 = S^6 = 0$ and $T^5 \neq 0 \neq S^5$. then there exists a linear transformation A from V to itself such that $ATA^{-1} = S$.