COMPLEX ANALYSIS QUALIFYING EXAM. SPRING 2013 **JANUARY 4, 2013**

- 1. a) Let u be a real-valued harmonic function on a simply connected domain $D \subset \mathbb{C}$. Prove that there is a function v (the harmonic conjugate of u) defined on D such that f = u + iv is holomorphic.
 - b) Find the harmonic conjugate of $u(x+iy) = xe^x \cos(y) ye^x \sin(y)$.
 - 2. Evaluate $\int_{-\infty}^{\infty} \frac{x^2}{x^4 + 1} dx$.
- 3. Let D denote the intersection of the two open disks $|z \pm i/\sqrt{3}| < 2/\sqrt{3}$. Find a one-toone conformal map from D onto the half-plane Re(z) > 0.

- 4. a) Prove that on the complement (in \mathbb{C}) of the interval [-1,1], there is a holomorphic function f(z) such that $e^{f(z)} = \frac{z-1}{z+1}$. (Hint: Consider the image of the right hand side. Alternatively, take the derivative of both sides.)
- b) Show furthermore that f cannot be extended holomorphically to the complement of $\{-1,1\}.$
- c) Find the Laurent expansion of f in the annulus $1 < |z| < \infty$. Note that f is not unique - your answer will have a parameter.
- 5. Prove that for every nonnegative integer n, the polynomial $f_n(z) = \sum_{k=0}^n \frac{z^k}{k!}$ has no roots in the open unit disk. (Hint: Check n = 1 and n = 2 directly.)
- 6. Consider the function $f(z) = \frac{1}{\sin z}$, defined on $\mathbb{C} \pi \mathbb{Z}$.

 a) Show that f cannot be approximated uniformly by polynomials on compact subsets of $\mathbb{C} \setminus \pi \mathbb{Z}$, i.e. there is no sequence $p_1(z), p_2(z), \ldots$ of polynomials such that for every compact $K \subset \mathbb{C} \setminus \pi\mathbb{Z}$ the sequence $p_n \to f$ uniformly on K.
- b) Show that, on the other hand, it is possible to approximate f uniformly by polynomials on any compact disk contained in $\mathbb{C} \setminus \pi \mathbb{Z}$.