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MATH 253 LECTURE NOTES for FRIDAY SEPT. 23,1988:    TANGENTS 
edited March 26, 2013. 
 
Suppose that Apple Computers notices that every time they raise (or lower) the 
price of a $5,000 Mac II by $100, the number of Mac II sales for that month 
drops (or rises) by 1%.  How much should they raise or lower the price to 
maximize their monthly gross sales?  This translates mathematically, as we will 
see later, into a problem requiring us to find a tangent line to the graph of 
income versus price.   
The problem of finding the tangent line to various curves interested and 
challenged the best mathematicians for centuries. It was solved by the ancients 
for circles and parabolas and some other special curves.  Newton gave the "last 
word" on the problem with his definition of a tangent as a "limit" of secant lines 
(generalizing Euclid's characterization of tangents to circles as limits of secant 
lines in his Prop. III.16), but earlier Descartes and Fermat, among others had 
completely understood the problem, at least for graphs of polynomials, simply 
using algebra and no infinite processes such as limits.  In today's notes we will 
see how Descartes' method works on polynomials.  Later we will observe how it 
fails for trigonometric functions like sine and cosine, at which point we will 
introduce the full power of Newton's method of limits.  Newton's approach will 
then clarify not only the question of how to find a tangent line when it exists, 
but also how to identify those situations in which a tangent line does not in fact 
exist.  I hope that this presentation, which separates the two essentially 
different ideas of tangent and limit, will help the student to understand both 
ideas better. 
 
The one curve whose tangents almost everyone is familiar with is the circle: 

 
 The middle line in this picture, the one meeting the circle only once, is the 
tangent line to the circle.  The top line misses the circle entirely and the lower 
line cuts across the circle, meeting it again.  But look at the following picture:   
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Here the horizontal line meets the curve twice, but if you look closely you see 
that it meets it differently at the two points of intersection.  At the left hand 
intersection point, the line just touches the curve without crossing it, the way 
the tangent line to a circle meets the circle.  At the second intersection point, 
the one on the right, the line cuts right across the curve.  This line is a tangent 
line to this curve, but it is only tangent to the curve at one of the two points 
where it meets the curve, namely the left one.  (Compare the definition of 
tangent line to a circle in Euclid, as a line that meets the circle "but does not 
cut (across) it".)  So if a line meets a curve at several points, it may be tangent 
to the curve at some of the points and not at others depending on the way in 
which it meets the curve at each point.  In particular a line is tangent to a curve 
at a point if it meets the curve at that point in a special way.  There will be 
many lines that meet a curve at a particular point, but in general only one of 
them will be tangent to the curve at that point. 
 
 Here is still another example of a different kind, the midpoint of an "S" curve: 
 
 

 
This time all three lines meet the curve at the same point, and they all cross the 
curve in the sense that they go from one side to the other, but the line labeled 
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"t" is different from the other lines passing through this curve at this point 
since it meets the curve at a smaller angle than the other lines do.  (Euclid also 
characterizes a tangent to a circle in terms of the angle between the tangent 
and circle, in Prop. III.16.)  It "touches" the curve similar to the way the tangent 
to a circle touches a circle, and it only crosses the curve because of the way the 
curve happens to change direction at the point. To see this it may help to look 
at only half the "S" curve: 

 
DESCARTES' METHOD FOR FINDING TANGENTS 
Now let us recreate Descartes' approach to understanding just what it is about 
the way a tangent line meets a curve which differs from the way all other lines 
do so.  The idea is to use algebra to solve for the points where a line 
meets a curve, and then notice that at a point of tangency a line 
actually meets a curve "doubly" in the sense that the equation we 
solve to get the intersection points has a "repeated root" at the 
point of tangency.  Then all we have to do is look, among all lines that meet 
a curve at a given point, for the one that meets it doubly and we will have the 
tangent line at that point. 
 
First let's examine again a tangent to a circle, say the circle with equation 
x2+y2=4.  This is the circle of radius 2 centered at the origin and we know that 
at the north pole, i.e. the point (0,2), that the tangent line has equation y = 2.  
Stop and draw the graphs now on scratch paper to convince yourself of this.  
Now to find the points where the line meets the circle we just substitute the 
equation for the line into the equation for the circle and solve.  So we substitute 
y = 2 into the circle's equation, getting the equation x2 + 4 = 4, or x2 = 0, 
which indeed has x = 0 as a double root!  [Recall that we find the roots of an 
equation by factoring it, and repeated roots correspond to repeated factors.  
Here we have (x)(x) = 0, so x is a double factor and so 0 is a double root.  In 
the example (x-1)(x-2)(x-1) = 0, we would have (x-1) as a double factor and so 



 
 
4 

 
 

1 is a double root; and so on.  Review your algebra text, if necessary, on the 
multiplicity of roots.] 
Next consider the curve with equation x3 - 3x - 2 = y.  If you plot some points 
you find that this curve looks like the picture at the top of page 2, with the 
horizontal line as the x-axis.  Thus we guess that the x-axis meets this curve at 
two points, and is tangent to it at exactly one of those points.  To verify this 
we must solve algebraically for the points where the x-axis meets this curve, so 
again we substitute the equation of the x-axis, which is y = 0, into the equation 
of the curve, which gives us x3 - 3x - 2 = 0.   To factor this recall that the first 
guess at the roots of this polynomial should be the factors of the constant 
term, which are {+2,-2,+1,-1}.  [For this, review an algebra lesson on rational 
roots.]  Trying these we find that +2 and -1 are indeed roots of this polynomial 
and therefore that x-2 and x+1 are factors.  Dividing them out leaves us with 
x+1, so we get the full factorization as x3 - 3x - 2 = (x-2)(x+1)(x+1).  Hence 
the x-axis meets the curve at the points x=2 and x=-1, and it meets the curve 
doubly at x= -1 but only simply at x=2.  If we look again at the graph below, we 
see that this reflects the fact that the line y=0 meets the curve y= x3-3x-2 
tangentially at the point (-1,0) corresponding to the double root x= -1, and 
meets it again non-tangentially at the point x=2, corresponding to the simple 
root x=2. 
   

 
   Finally here is another example, similar to the case of the midpoint of the "S-
curve" above:  the equation of the curve is y=x3, and if we graph it, it looks like 
the following picture in which we see that the x-axis is apparently the tangent 
line to the curve at the point (0,0). 
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 Now let's do the algebra to compute the multiplicity of the point (0,0) as an 
intersection point of this curve with the x-axis.  This time we want to solve y=0 
and y=x3, so we substitute and get 0=x3=(x)(x)(x), so that this time x=0 is 
actually a triple root.  What this means is just that the x-axis is very tangent to 
the curve y=x3 at the point (0,0) corresponding to the triple root x=0.  So we 
have the following principle:  
 
A line is tangent to a curve at a given point if, when we substitute 
the equation of the line into that of the curve and solve, the point 
in question corresponds to a root which is at least a double root, 
i.e. either a double or triple or higher multiplicity root.  
 
[Note also that the tangent apparently cuts across the curve only in case the 
multiplicity is odd.  In the case of a circle which has a quadratic equation, the 
only possible multiplicities were one and two, hence the tangent line could be 
characterized by Euclid as the one with even multiplicity.] 
 
Now let's use this principle to find some tangent lines to some curves.  Let the 
curve be the parabola y=x2, and we ask for the tangent line at the point (2,4).  
We know from pre-calculus that any line with equation y=m(x-2)+4, where m is 
any number, will pass through the point (2,4), and hence will meet the parabola 
there.  (Just set x=2 in this linear equation and see that you get y=4.)  We want 
to see what the slope m should be so that the line will meet the parabola doubly 
at the point (2,4).  So let's substitute the equation of the line into that of the 
curve and solve for x.  (Of course m is also an unknown quantity here but think 
of it as a fixed number for now.)  Substituting gives m(x-2)+4=x2, and if we 
bring all the unknowns to one side we have x2-m(x-2)-4=0.  This is a quadratic 
equation whose two roots should give us the two points where the line y=m(x-
2)+4 meets the curve  y=x2.  Now we know one of those points is at (2,4) so 
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(x-2) is guaranteed to be a factor of this quadratic.  If we divide x2-m(x-2)-4  
by (x-2), using long division (or synthetic division) of polynomials as in pre-
calculus, we get (x+2-m), so that x2-m(x-2)-4= (x-2)(x+2-m), and so the points 
where the line meets the curve correspond to the roots x=2 and x=m-2.  The 
only way we can have a double root at x=2 then would be if the root m-2 were 
also equal to 2; but m-2 = 2 means m=4, so the tangent line to y=x2 at the 
point (2,4) has slope m=4, and thus has equation y=4(x-2)+4, or in point -slope 
form, y-4=4(x-2). 
 
Exercise: Use this same method to check that at (3,9) the tangent line to y=x2 
has equation y-9=6(x-3).  Graph this parabola and these lines and see that the 
lines really look tangent to the curve at the given points. 
 
Next we will derive some general formulas for the slopes of tangent lines.  First 
consider again the parabola y=x2, and the point (a,a2) on it.  A line with 
equation y=m(x-a)+b passes through this point if when we set x=a we get y= 
a2; which means b must equal a2.  So the equation of any line which meets the 
parabola at (a,a2) must have form y=m(x-a)+a2, and we want to solve for the 
value of the slope m which will make the line tangent to the parabola at that 
point.  As before we substitute the equation of the line into that of the parabola 
to get m(x-a)+a2=x2, and rearrange to x2-m(x-a)-a2=0.  Since putting x=a 
solves this equation, we know that (x-a) is a factor, [if necessary, review the 
"factor theorem" of precalculus].  Dividing by (x-a) gives (x+a-m) so that x2-
m(x-a)-a2=(x-a)(x+a-m).  Thus the two points where the line meets the 
parabola correspond to the roots x=a and x=m-a, so there is a double root at 
x=a only if m-a is also equal to a, or only if m equals 2a.  Thus the tangent 
line to the parabola y=x2 at the point (a,a2) must have slope m=2a, 
and equation y=2a(x-a)+a2 or equivalently y-a2=2a(x-a).  
 
Exercise:  Use this method to see that the tangent line to the curve y=x3 at the 
point (a,a3) has slope 3a2, and equation y-a3=3a2(x-a). 
 
We do one more example: 
Theorem: The tangent line to the curve y = xn at the point (a,an) 
has slope m = nan-1, and thus has equation y-an = nan-1(x-a). 
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Proof:  A line through that point has equation y=m(x-a)+an, so substituting 
gives m(x-a)+an=xn, or xn-m(x-a)-an=0.  We know x=a is a root of this, so (x-a) 
is a factor, and dividing by it gives this factorization: xn-m(x-a)-an =(x-a)(xn-
1+axn-2+a2xn-3+.....+an-2x+an-1-m).  (You need of course to get out your 
pencil and paper and do this division problem yourself; again you can review 
these division skills in a pre-calculus book.)  Thus there is at least one root given 
by x=a, and x=a is a double root only if x=a is also a root of the long factor on 
the right. That is x=a is a double root if and only If, when we substitute x=a into 
the long factor, we get zero.  If we actually do substitute it in, we see we get n 
terms all equal to an-1, and  -m at the end, which equals nan-1-m. The only way 
this can be zero is when m = nan-1, as we said. Q.E.D. 
 
Now we want to carry this method as far as we can, and derive  by the same 
technique, a method for computing the tangent line to the graph of any 
polynomial. 
 
So let f(x) be shorthand for any polynomial at all, (such as x6+59x3-x2+4, 
perhaps.)  We know the point (a,b) lies on the graph of this polynomial only if 
b=f(a), where f(a) is shorthand for whatever you get when you set x=a in the 
polynomial f(x).   Thus our problem is to find a way to compute the slope of the 
tangent line to the graph of y=f(x) at the point (a,f(a)).  A line through this 
point has equation y=m(x-a)+f(a), so after substituting we have to solve m(x-
a)+f(a)=f(x), or f(x)-f(a) -m(x-a) =0.  Now you can see that if you set x=a in 
this you get zero, so x=a is one root and thus (x-a) is one factor.  Then we 
would like to divide f(x)-f(a) -m(x-a)  by (x-a) to get a second factor as we have 
done before, and then as before x=a will be a double root of f(x)-f(a) -m(x-a) 
precisely when x-a is also a root of the second factor.   Since we don't know 
what f(x) is, we do not know exactly what we get as the second factor.  We do 
know however that we do get something, so we just write {f(x)-f(a) -m(x-
a)}/(x-a) to represent the other factor.  Now as we said, x=a is one root of f(x)-
f(a) -m(x-a) =0,  and it is a double root only if x=a is also a root of the "other 
factor" {f(x)-f(a) -m(x-a)}/(x-a), i.e. only if after simplifying the quotient {f(x)-
f(a) -m(x-a)}/(x-a), and then setting x=a, we again get zero. Now if we just 
rearrange this a bit, this quotient becomes [{f(x)-f(a)}/(x-a)] - m(x-a)/(x-a), 
and after cancelling, this is equal to [{f(x)-f(a)}/(x-a)] - m.  Now this will be 
zero after simplifying and setting x=a, only if the quotient [{f(x)-f(a)}/(x-a)] 
becomes equal to m after simplifying and setting x=a.  Thus we have found a 
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procedure for computing m, the slope of the tangent line.  We rephrase it as 
follows: 
 
 
To find the slope m of the tangent line to the graph of y=f(x) at the 
point (a,f(a)), where f is any polynomial, just simplify the expression 
[{f(x)-f(a)}/(x-a)], and then set x=a.   
 
Example:  Let f(x)=x2+2x, and a=1.  Then f(a)=12+2(1)=3, so we have to 
simplify [x2+2x-3]/(x-1).  Dividing gives us (x+3), and then setting x=1, gives 
1+3=4.  So the slope of the tangent line is 4, and the equation is y-3=4(x-1). 
 
Exercise:  Use this method to find the equation of the tangent line to the graph 
of y=x3-4x2+1 at the point (-1,-4). 
 
What happens when you use this procedure to try to find the tangent line to 
the graph of y=1/x at the point (2,1/2)? [Note: 1/x is not a polynomial.] 
What about y=x1/2 ?  What about y = sin(x)?   
In all cases except the last, the method will work if you persist.  The only 
differences are in how to do the simplification of {f(x)-f(a)}/(x-a).  When 
y=sin(x) however, no simplification is possible and a genuinely new idea is 
needed, that of "limits".  This brilliant idea of Newton's (generalizing and 
perhaps inspired by Euclid's Prop. III.16) confirms why Descartes' method above 
works, and also improves on it by showing how to evaluate  
{f(x)-f(a)}/(x-a) at a, at least in some cases, even when you cannot simplify.  


