
A primer of linear algebra 
 

Chapter one: Linear spaces and linear maps 
Linear algebra is about linear spaces, also called vector spaces, and linear maps between them.  
The first topic is therefore linear spaces.  
 
Defn: A (real) vector space V is a set of "vectors" closed under addition, and under “scalar” 
multiplication of vectors by real numbers, and which is an “abelian group” under addition (the 
usual properties hold: associativity, commutativity and existence of a zero and negatives), and 
has the usual properties under scalar multiplication (multiplication by 1 acts as the identity, 
multiplication distributes over addition, a(bv) = (ab)v if a,b, are numbers and v is a vector).  
 
The same definition can be given of a vector space with scalars in any field k, such as the complex 
numbers, or even the field E = k[X]/(f) where f is an irreducible polynomial over k. 
 
Eg: The basic example is Rn = ordered n - tuples of real numbers, with component - wise 
operations: (v1,...,vn) + (w1,...,wn) = (v1+w1, v2+w2,...,vn+wn) and a(v1,...,vn) = (av1,...,avn). 
For any field k, k^n is a k vector space; as is Fun(S,k) = {k valued functions on a set S}. 
 
Defn:  A “subspace” of V is a non empty subset closed under addition and scalar multiplication.   
 
E.g. C^∝(R) is the subspace of real valued functions on R which are infinitely differentiable. 
 
Defn: Given a subspace W of V we define a new vector space V/W, the “quotient” of V by W, 
by identifying two vectors x,y in V provided x-y lies in W.  Addition is defined by setting [v] + 
[w] = [v+w], where [v] denotes the equivalence class of v, and c[v] = [cv]. 
 
Ex. Addition is well defined in V/W, i.e. independent of choice of representatives. 
 
E.g. Vectors are equivalent in R^2/{y=0} if they have the same y coordinate. 
 
Defn: For any two vector spaces V,W we define a new space VxW, the “direct product” of V 
and W, consisting of all ordered pairs (x,y) with x in V and y in W.  Addition and multiplication 
are done separately on components as in Rn = the product of n copies of the real numbers. 
 
Defn: A map f:V-->W from V to W is linear if f(x+y) = f(x)+f(y) for all x,y, in V, and if also 
f(ax) = af(x) for all x in V and all real numbers a. 
 
E.g. Df = f’ is a linear map D: C^∝(R)--> C^∝(R), more generally (D-c)f = f’-cf is linear. 
 
Defn: An isomorphism is a linear map with a linear inverse.  
 
E.g. Rotation 90degrees c.c., (x,y)-->(-y,x) is an isomorphism R^2-->R ^2, (with inverse what?). 
sending (a1,...,an) in k^n, to f in Fun({1,...,n},k) with f(i) = ai, is an isomorphism. 
 



Defn: If f:V-->W is a linear map, then ker(f) = {v in V: f(v) = 0}, and Im(f) = {w in W: w = f(v) 
for some v in V}. Note: ker(f)is a subspace of V, and Im(f) is a subspace of W. 
 
E.g. ker(D) = {constant functions}, ker(D-c) = {a e^(ct), all a in R}. Im(D) = ?, Im(D-c)=? 
 
Ex:  1) A bijective linear map is an isomorphism. 
2) Given V and a subspace W, the map q:V-->V/W sending v to [v], is linear with ker(q) = W. 
3) Given V,W the map π:VxW-->V sending (x,y) to x is linear and ker(π) = {0}xW. 
4) The set Hom(V,W) of all linear maps V-->W is closed under addition and scalar multiplication, 
where (f+g)(v) = f(v)+g(v) and (cf)(v) = c(f(v)), hence Hom(V,W) also forms a vector space.   
5) Hom(R,V) is isomorphic to V, by the map sending f to f(1). 
6) If Hom(V,R) = V* is the "dual" vector space of V, sending f to the operation “preceding by f” 
defines a linear map Hom(V,W)-->Hom(W*,V*), i.e. f:V-->W goes to the map g-->(gof). 
7) Sending each x in V to “evaluation at x” defines a linear map V-->V** = Hom(V*,R). 
 
If f:V-->W is any linear map then: 
8) f is constant on equivalence classes in V/ker(f). 
9) f defines a linear map [f]: V/ker(f)--->W sending [v] to f(v).  
10) [f] in 9) is always injective, and [f] is surjective if and only if f was, hence [f] is an 
isomorphism if and only if f was surjective. 
11) A linear map [f] can be defined the same way on V/U, for any subspace U contained in ker(f), 
but [f] will not be injective unless U = ker(f). 
 
E.g. [D]: C^∝(R)/{constants}--> C^∝(R) is an isomorphism, with what inverse? 
 
Defn: A "linear combination" of the vectors {v1,...,vm,....} is a vector w which is a finite sum of 
scalar multiples of the given ones, i.e. a vector of form w = a1v1+...+amvm.  The term also 
denotes the summation on the right. 
 
Eg: In R3, (4,-5,1) = (8,-1,7) - 2(2,2,3) ) is a linear combination of (2,2,3) and (8,-1,7). 
In the C-space of C-valued functions on R, e^(it) = cos(t) + i sin(t), is a lin. comb. of cos, sin. 
   
Defn: A set S of vectors "spans" or "generates" a vector space V iff every non zero vector in V 
is a linear combination of vectors in S, or equivalently if the set S is not contained in any proper 
subspace of V.  In particular, the empty set spans the space {0}. 
 
Eg: The set {(1,0), (0,1)} spans R2 since any vector (a,b) can be written as the linear 
combination a(1,0) + b(0,1) = (a,b).   The set {cos(t), sin(t)} spans ker(D^2 + 1). 
 
Ex: For any subset S = {v1,...,vm,....} of a vector space V, the set of all finite linear combinations 
of the vectors in S, plus 0 (if S is empty), forms a subspace L(S) of V which is spanned by S. 
 
Defn: A space V is finite dimensional if V has a finite spanning set.   
 
Defn: An indexed set of vectors {v1,...,vm,....} is independent if the only scalars a1,..,am such 



that a1v1+...+amvm = 0 are a1=...= am = 0; i.e. if when any ai is ≠ 0, then a1v1+...+amvm ≠ 0. 
 
Eg. {(1,0), (0,1)} is independent since the only way we can have a(1,0) + b(0,1) = (a,b) = (0,0), 
is to have a = b = 0.  The empty set is independent.  {cos(t), sin(t)} is independent. 
 
Ex: In a dependent set some vector is in the space spanned by the others.  Vectors in a sequence 
are dependent iff some vector is in the space spanned by the previous vectors. 
 
Defn: A subset S of V is a basis, if S is independent and L(S) = V. 
 
Eg: The set of unit vectors e1 = (1,0,...,0),...., en = (0,....,0,1), is a basis of Rn called the 
“standard basis”.  The set {(3,0), (2,5)} is another basis of R2. 
 
Ex: If {v1,...,vn} is a basis of V, and {w1,...,wm} is a basis of W, then {(v1,0),...,(vn,0), 
(0,w1),...,(0,wm)} is a basis of VxW. 
 
Ex: i) A finite sequence {v1,...,vn}  in a k vector space V, defines a unique linear map f:kn-->V 
sending (a1,...,an) to a1v1+...+anvn.   
ii) The map f in i) is injective if and only if S = {v1,...,vn} is independent, and  
iii) f is surjective if and only if S = {v1,...,vn} spans V, and  
iv) f is an isomorphism if and only if S = {v1,...,vn} is a basis for V. 
 
Cor: There is a one to one correspondence between linear maps f:kn-->V and ordered subsets 
{v1,...,vn} of n vectors in V, in fact Hom(k^n,V) and Fun({1,...,n},V) are isomorphic spaces. In 
particular V is finite dimensional/k iff for some n, there is a linear surjection k^n-->V. 
 
Rmk: An (ordered) basis for V introduces linear coordinates into V, since by the isomorphism 
with Rn, a vector in V gets represented by a sequence of numbers, i.e. a coordinate vector in Rn. 
 
Defn: An isomorphism V-->kn is called a coordinate system for V, and an isomorphism  
kn-->V is called a parametrization of V. 
 
Def: If E is a ring containing the field k, E is a vector space over k, and if c is an element of E, 
k[c] = {space of polynomials in c}, denotes the span of the monomials {1, c, c^2, c^3,...}.  c is 
called a “variable”, or “transcendental/k” iff these monomials are independent/k.  The symbol X 
is often reserved for a variable, and the infinite dimensional space k[X] = “the polynomial ring/k”. 
 
Eg: The subspace of polynomials of degree ≤ d, has basis the set of d+1 monomials {1,X,...,Xd}.   
In this basis the coordinates of a0 + a1X +....+an Xn, are its coefficients (a0, a1,...., ad).  Another 
basis is the sequence {1, (1+X), (1+X+X2),..., (1+X+...+Xd)}.  Then the coordinate vector of 1 
is (1,0,...,0), the coordinate vector of (1+X) is (0,1,0,...,0),..., and the coordinate vector of 
(1+X+...+Xd) is (0,...,0,1). 



 
Ex. The natural linear map k[X]-->Fun(k,k) with image = {space of polynomial functions on k}, 
is injective iff k is infinite.  E.g. if k = Z/2, then X(X-1) goes to the zero function.  Thus 
polynomials are not always the same as polynomial functions. 
 
Thm:  Every finite dimensional space V has a basis, i.e. V admits an isomorphism with some kn. 
Pf:  Choose a finite spanning set S = {v1,...,vn} of V.  Throw out all zero vectors.  If v2 is a 
multiple of v1, throw out v2, if not keep it.  If v3 is a linear combination of {v1,v2}, throw out 
v3, if not keep it.  Continue throwing out vectors which are linear combinations of previous ones.  
Then the ones left are a basis.  QED. 
 
Cor:  A basis S of V defines a one - one correspondence between linear maps from V to W and 
set functions from S to W, i.e. every function S-->W extends uniquely to a linear map  V-->W. 
Pf : This is true of kn, hence of all finite dimensional spaces V. QED. 
 
Cor:  A linear surjection f:kn-->V which is not injective, restricts to an isomorphism from some 
linear subspace km of kn to V(where m < n).   
Pf:  The map f takes the standard basis of kn to a generating set S for V.  Reduce S to a basis B, 
and choose a subset T of standard basis vectors of kn mapping bijectively to B, hence an 
isomorphism from the subspace L(T) of kn, to V.   L(T) is easily identified with km where m is 
the number of vectors in the subset T. QED. 
 
Ex: If V = kn and W is the subspace spanned by en, then V/W is isomorphic to kn-1. 
 
Defn: A space V has dimension = n, iff V is isomorphic to kn, iff V has a basis of n vectors.   
 
To show a space cannot have two different finite dimensions, we prove: 
Thm:  If kn and km are isomorphic, then n = m. 
Pf: (induction on n) There is no linear surjection f:k1-->km if m >1, since the image vectors of f 
all have proportional entries.  If 2 ≤ n< m assume f is a linear surjection f: kn --> km, and 
{e1,...,en}, and {u1,...,um} are the standard bases of kn and km.  Then the composition kn--
>km/span(um) is surjective but not injective, since if v ≠ 0 and f(v) = um, then v maps to [0] in 
km/span(um).  Hence by previous Cor, kn-->km/span(um) restricts to a surjection from some 
subspace kk of kn, with k < n, to km/span(um) = km-1.  Since k < m-1, this contradicts the 
inductive hypothesis. QED.  
 
Cor:  Two finite dim’l spaces are isomorphic iff they have the same dimension. 
 
Cor:  All bases of a finite dimensional space have the same cardinality. 
 
Convention: The space {0} has dimension zero; the empty set is a basis. 



 
Thm:  If W is a subspace of V and dim(V) < ∞, dimW + dim(V/W) = dimV. 
Pf/Ex:  Choose a basis w1,...,ws for W, and extend it to a basis  
{w1,...,ws, v1,...,vt} of V.  Then {[v1],...,[vt]} is a basis for (V/W). QED. 
 
Thm: If f:V-->W is a linear surjection and dim(V) < ∞, then dim(ker(f))+dimW = dimV. 
Pf: f induces an isomorphism from V/ker(f) to W.  QED. 
 
Cor:  If V,W are finite dim’l, then dim(VxW) = dimV + dimW. 
Pf:  The projection taking (x,y) to y is a linear surjection from VxW to W with kernel Vx{0}, 
which is isomorphic to V.  QED. 
 
Lemma: If dim(V) < ∞, every independent set in V is contained in a basis. 
Pf: If {v1,...,vn} is independent, and {w1,...,wm} is a basis, reducing the generating set 
{v1,...,vn,w1,...,wm} to a basis, as above, does it. QED. 
 
Ex: 1) If dim(V) = n, an independent set of vectors in V has ≤ n vectors.   
2) If ∞ > dimV > dimW, no linear map V-->W is injective, and no linear map W-->V is surjective. 
3) If S = {x1,....,xk} are vectors in V, and dim(V) = n, then any two of the following implies the 
third. a) S is independent, b) S spans V, c) k = n. 
4) If T1,....,Tk:V-->V are surjective linear maps, with finite dimensional kernels, then the kernel 
of their composition T1o....oTk, has dimension equal to the sum dim.kerT1+....+ dim.kerTk. 
5) A linear diff. operator with constant coefficients L = (D-c1)o....o(D-ck): C^∝(R)--> C^∝(R), 
has k dimensional kernel.  Give a basis for ker(L) and prove it is a basis. 
 
Chapter Two: dot products, matrices, eigenvectors, and digonalizable linear maps. 
Definition: The “dot product” of two vectors (a1,...,an) and (b1,...,bn) in kn is defined as: 
(a1,...,an).(b1,...,bn) = a1b1+....+anbn.  It is a number.  We say vectors a,b, in kn are “orthogonal” 
iff a.b = 0. 
 
The matrix of a linear map kn --> km  
Given a linear map f:kn -->km, arrange the image vectors f(e1),...,f(en) as columns in a rectangular 
“matrix” A.  Then there are m rows and n columns; we call A an “m by n” matrix.  If v = 
(a1,...,an) is any vector in kn, f(v) = a1f(e1)+...+anf(en), is the linear combination of the columns 
of A having the coordinates of v as coefficients.  Thus the ith entry of f(v) is obtained by dotting 
v with the ith row of A.   
Thus f(v) can be computed by multiplying A by v as follows: write v as a length n column vector 
to the right of A.  The product Av is a length m column vector, where the ith entry of Av is the 
dot product of the ith row of A with v.  Thus each linear map from kn to km is represented by 
multiplying by a (unique) m by n matrix. 
 
Eg: The matrix of the map R2-->R2, f(v) = 6v, has rows (and columns): (6,0) and (0,6).  The 



matrix of the rotation map of R2 counter clockwise through π/2 radians has columns (0,1), (-1,0). 
 
Ex: Find the matrix of the reflection map of R2 in the line spanned by (1,0), and the matrix for 
counter clockwise rotation about (0,0) through t radians. 
 
Ex: i) The space of all m by n matrices forms a vector space Mat(m,n) where A+B is the matrix 
whose (i,j) entry, i.e. the entry in the ith row and jth column, is the sum of the (i,j) entries of A 
and B, and where cA is the matrix whose (i,j) entry is c times the (i,j) entry of A. 
ii) The space Hom(kn, km) is isomorphic to the space Mat(m,n), (note the indices n,m occur 
correctly in the reverse order here). 
iii) The dimension of Mat(m,n), hence that of Hom(kn,km), is mn. 
 
The matrix associated to a linear map f:V-->W by bases of V,W. 
If f is a linear map from one finite dimensional vector space V to another W, then by choosing 
bases for V and W we obtain isomorphisms between these abstract spaces and some coordinate 
spaces kn and km, and hence a resulting linear map from kn to km which has a matrix A.  This A 
is called the matrix of f associated to the given bases for V and W.  A map from V to itself has a 
matrix associated to any given basis of V. 
 
If f is a linear map f:V-->W and v1,...,vn, and w1,...,wm are bases of V,W, the jth column of the 
associated matrix for f, is composed of the coefficients c1,...,cm where f(vj) = c1w1+...+cmwm, is 
the unique basis expansion in W, for the image under f of the jth basis vector of V. 
 
Eg: If D:V-->V takes a polynomial of degree ≤ 2 to its derivative, its matrix in the basis {1, X, 
X2} has columns (0,0,0), (1,0,0), (0,2,0), since D(1) = 0 = 0(1,0,0) + 0(0,1,0) + 0(0,0,1), and 
D(X) = 1 =  1(1,0,0) +0(0,1,0) +0(0,0,1), and D(X2) = 2X = 0(1,0,0) + 2(0,1,0) + 0(0,0,1). 
 
Matrix multiplication corresponds to map composition. 
Ex: If f:V-->W and g:W-->U are linear maps, and we choose bases for all three spaces, the matrix 
of the composition gof has as entry in its ith row and jth column, the dot product of the ith row 
of the matrix for g with the jth column of f.  If A is the matrix of f, and B is the matrix for g, we 
write this matrix product as BA = the matrix for gof, (in the same bases).  
 
Defn: An eigenvector of a linear map f, is a non zero vector v such that f(v) is a scalar multiple 
of v, i.e. such that f(v) = cv for some scalar c.  The scalar c is the eigenvalue associated to v. 
 
Geometry of eigenvectors:  Recall that a vector v in R3 say, has both a length and (if v ≠ 0) a 
direction.  An eigenvector is a non zero vector v such that either f(v) = 0, or v and f(v) have the 
same or opposite direction.  Hence v spans a line that is mapped by f into itself. 
 
Eigenvectors and diagonal matrices:  If V has a basis consisting of eigenvectors for the map 
f:V-->V, i.e. an "eigenbasis", then the matrix A for f in this basis is "diagonal"; A has the 
eigenvalues of this basis on its main diagonal (upper left to lower right) and zeroes elsewhere.  
 



Eg: The map c:V-->V multiplication by a scalar c, has diagonal matrix c.I in any basis.  Thus 
every basis is an eigenbasis for the identity map.   
 
Eg. The map f:R2-->R2 sending (1,0) to (1,0) and (0,1) to (0,2) has diagonal matrix with columns 
(1,0) and (0,2) in the standard basis, i.e. the standard basis is an eigenbasis.  But (1,1) is not an 
eigenvector, so in the basis {(1,0), (1,1)}, the matrix of f has columns (1,0), (-1,2). 
 
Ex: The derivative map D on real polynomials above, has no eigenbasis.  More generally, if T:V--
>V is nilpotent, i.e. if T^r = 0 for some r, but T (and V) is not zero, T has no eigenbasis. 
 
The transpose of a matrix, symmetric matrices. 
Defn: An n by n matrix A is symmetric if the entry in the ith column and jth row equals the 
entry in the jth column and ith row, for every i and j.  
The matrix A* obtained from A by interchanging its rows and columns is called the transpose of 
A.   Thus A is symmetric if and only if A = A*. 
 
Ex: i) If the operations are defined, (A+B)* = A* + B*, and (AB)* = B*A*. 
ii) If A is an m by n matrix, and v, w are vectors in kn, km respectively, then v.(A*w) = (Av).w.   
iii) If A = A*, then Av.w = v.Aw, for all v,w. 
 
“Spectral theorem”  (real symmetric matrices are orthogonally diagonalizable) 
Thm: If k = R and A = A*, then Rn has a basis of mutually orthogonal eigenvectors of A. 
Pf: The real valued function f(x) = Ax.x has a maximum on the unit sphere in Rn, at some point y 
where the gradient df of f is "zero", i.e. df(y) is perpendicular to the tangent space of the sphere 
at y. The tangent space at y is the subspace of vectors in Rn perpendicular to y, and df(y) = 
2Ay.  Hence Ay is perpendicular to the tangent space at y, i.e. Ay = 0 or Ay is parallel to y, so 
Ay = cy for some c, and y is an eigenvector for A. 
 Now restrict A to the subspace V of vectors orthogonal to y.  If v.y = 0, then Av.y = 
v.Ay = v.cy = c(v.y) = 0.  Hence A preserves V.  A still has the property Av.x = v.Ax on V, so 
the restriction of A to V has an eigenvector in V.  (Although V has no natural representation as 
Rn-1, the argument for producing an eigenvector depended only the symmetry property Av.x = 
v.Ax.) Repeating, A has an eigenbasis. QED. 
 
Alternate proof: Choose y in the unit sphere where f(x) = Ax.x has minimum value c, and set B 
= A-cI.  Then for all x,t,  0 ≤ B(y+tx).(y+tx) = 2t By.x+t2 Bx.x.  Hence By.x = 0 for every x in V, 
i.e. By = 0, so Ay = cy. 
 
The minimal polynomial of a linear map (in finite dimensions) 
Given a vector space V and a linear map f:V-->V, define a multiplication of the polynomial ring 
k[X] on V by saying that X times a vector v is f(v). similarly, X2 times v is f(f(v)), and so on.  
Sending a polynomial P to multiplication by P, i.e. sending P to P(f), defines a linear map from 
k[X] to Hom(V,V).  If dim(V) = n, then dim(Hom(V,V)) = n2, but k[X] is infinite dimensional, 
with basis all monomials {1, X, X2, X3,....}.  Thus the map k[X]-->Hom(V,V) has a non zero 



kernel, i.e. for some P ≠ 0, P(f)=0. 
 
Defn: If f:V-->V is a linear map, the monic polynomial P of least degree such that (P(f))v = 0 for 
all v in V, is the minimal polynomial of f.   
 
Ex: By the division algorithm, every polynomial in the kernel of the map k[X]-->Hom(V,V), is a 
multiple of the minimal polynomial of f. 
 
Characterizing diagonalizabilty by the minimal polynomial.  
Lemma:  If T:V-->V has minimal polynomial (X-c1)r1(X-c2)r2....(X-ct)rt with all ci distinct,  V 
is isomorphic to the product of Vi = ker(T-ci)ri. 
Pf: Consider the map from the product of the Vi to V, taking (v1,...,vt) to v1+...+vt, which we 
must show is injective and surjective.  Define polynomials P1,....,Pt, where P1 = (X-c2)r2(X-
c3)r3....(X-ct)rt, P2 = (X-c1)r1(X-c3)r3....(X-ct)rt, ...., Pt = (X-c1)r1(X-c2)r2....(X-ct-1)rt-1.  
The Euclidean algorithm gives Q1,...,Qt such that P1Q1+...+PtQt = 1.  Hence for any vector v in 
V, v = P1(T)Q1(T)(v) +....+Pt(T)Qt(T)(v) is in the sum of the images of the polynomials Pi(T). 
Since Im(Pi(T)) is in Vi, we have proved surjectivity.  
 For injectivity, assume v1+...+vt = 0.  Then each vi is a sum of the other vj hence vi lies 
in the kernel of Pi.  But each vi also lies in the kernel of every Pj with j ≠ i, hence each vi is in the 
kernel of Q1P1+...+Qt Pt = 1, i.e. every vi = 0.  This proves injectivity.  QED. 
 
Thm: A linear map f:V-->V is diagonalizable iff its minimal polynomial is (X-c1)(X-c2)....(X-ct) 
where t ≤ dimV and all ci are distinct.  
Pf:  If f has a diagonal matrix in the basis v1,...,vn, with entries c1,...,cn on the diagonal, note that 
the polynomial (X-c1)(X-c2)....(X-cn) does give zero when f is substituted for X, and this is still 
true when we omit repeated occurrences among the scalars ci.  On the other hand no proper 
factor of this reduced polynomial can annihilate all vectors in V, since if we omit say X- c1, then 
the remaining factors map v1 to (c1-c2)....( c1-ct) v1 ≠ 0.  Thus (X-c1)(X-c2)....(X-ct), t ≤ n, is 
the minimal polynomial.  
 Conversely if the map f has minimal polynomial as in the hypothesis, then V is 
isomorphic by the lemma to the product of subspaces ker(f-ciI).  Choosing bases of these 
subspaces and taking their union gives a basis for V consisting of eigenvectors for f.  QED. 
 
Eg: Since the map f:R2-->R2 with f(1,0) = (0,1), and f(0,1) = (0,0), satisfies X2 = 0, i.e. f(f(v)) = 
0 for all v, but f is not itself zero, f has minimal polynomial X2.  Hence by the theorem, f is not 
diagonalizable. 
 
Ex: Prove directly that in the example f just above the only eigenvectors are (0,a).  (Show f(v) = 
cv implies v = 0 or c = 0). 
 
Nilpotent maps and Jordan canonical form 
The lemma above showed that linear maps T whose minimal polynomials have linear factors with 



multiplicities (X-c)r, r > 1, lead to a decomposition involving subspaces on which the map T-c is 
not identically zero but is nilpotent, i.e. on which (T-c)r is identically zero.  Consequently, on 
each factor space Vi in the lemma above, the operator T is the sum of the diagonal operator ciId 
and the nilpotent operator (T-ci).  Thus also on all of V, any operator T whose minimal 
polynomial has all its roots in the scalar field, is the sum of a diagonalizable operator D and a 
nilpotent operator N.  Namely D is the unique operator on V whose restriction to Vi is ciId, and 
N is the unique operator whose restriction to Vi is T-ciId.  This proves the following: 
 
Cor:  If all roots of the minimal polynomial of T lie in the scalar field, then T = D+N where D is 
diagonalizable, N is nilpotent, and DN = ND, and D,N are unique with these proeprties. 
 
Ex: Prove that DN = ND, DT = TD, and NT = TN. 
 
Pf of uniqueness in Cor: In the proof of the lemma above, note that Pi(T)Qi(T) is projection 
on Vi , i.e. is the identity on Vi and annihilates every other Vj.  Since D is a linear combination of 
these projections, D is a polynomial in T, as is N = T-D.  Thus if T = D’ + N’ is another 
decomposition where D’, N’ are respectively diagonalizable and nilpotent and commute, then D’ 
and N’ both commute with T as in the exercise.  Thus D’,N’ commute with polynomials in T, 
hence with D and N above. 
 
Ex:  Conclude that N’-N is nilpotent.   
 
Moreover D’ commutes with projection on Vi, hence leaves Vi invariant.  Since the minimal 
polynomial of the restriction of D’ restricted to Vi divides that of D’,  it has distinct linear 
factors, so that restriction is diagonalizable.  Then D’-D is diagonalizable on every Vi, hence on 
V.   Thus if T = D+N = D’+N’, then D’-D = N-N’ is both diagonalizable and nilpotent, i.e. zero. 
Thus D = D’, and N = N’, i.e. D,N in the decomposition T = D+N, are unique.  QED. 
 
We will show next that an operator as above, whose minimal polynomial has all its roots in the 
scalar field, has a matrix almost as simple as a diagonal one, in a suitable basis. 
 
Thm: With hypotheses as in the previous lemma, there exist bases in which the matrix of T is 
almost diagonal.  I.e. each scalar ci occurs dimVi times on the diagonal, but there may also be 1’s 
in some places just below the diagonal.  [This is called a “Jordan” matrix for T.] 
Pf:  Since T commutes with any polynomial in T, each subspace Vi is invariant by T, i.e. T(Vi) is 
contained in Vi, so it suffices to show each Vi has such a basis.  Assume V is a space on which 
(T-c)r = 0, but (T-c)r-1 ≠ 0, i.e. S = (T -c) is nilpotent on V of order r.   Consider the quotient 
space V/ker(Sr-1), and choose a basis [x1],...,[xn] for it.  S induces an injection from V/ker(Sr-1) 
to the quotient ker(Sr-1)/ker(Sr-2), hence we may extend the independent set {[S(x1)],...,[S(xn)]} 
to a basis {[y1],...,[yn+m]} for ker(Sr-1)/ker(Sr-2).  Continuing, we obtain a basis 
{[z1],...,[zn+m+...+q]} for ker(S); then the set {x1,...,xn,y1,...,yn+m,....,z1,...,zn+m+...+q} is a 
basis for V. 



 (For independence, any relation among these, involving x’s, would yield a relation among 
the [xi], a contradiction.  Similarly if no x’s occur, but some y’s occur, we get a relation among the 
[yj], also a contradiction,...  For spanning, count dimensions, using that dimV = the sum of the 
dimensions of the Vi.)  Then this is the desired basis: {x1,y1,..,z1; x2,y2,...,z2 ; .... ; xn,yn,..,zn ; 
yn+1,...,zn+1; yn+2,...zn+2 ; yn+m,...,zn+m ; ....; zn+m+....+1, .... , zn+m+....+q}. 
 Note each xi is annihilated by Sr, each yi is annihilated by Sr-1, ...., and each zi is 
annihilated by S.  Thus the zi are the eigenvectors for T.  Moreover S acts cyclically on these 
vectors in each block.  I.e. S(xi) = yi, S(yi) = ... (we did not assign a letter to this one), ... , and so 
on down to S(...) = zi.  All the zi belong to ker(S).  Thus the r by r matrix for S acting on the 
block of basis vectors {xi,yi,...,zi} has first column (0,1,0,...,0), second column (0,0,1,0,....,0), 3rd 
column (0,0,0,1,0....,0), and rth column all zeroes (0,....,0).   
 There are n blocks like this, then m blocks of size (r-1) by (r-1) corresponding to the 
blocks of basis vectors {yn+j,....,zn+j}, and finally there are q blocks of size 1 by 1, i.e. one q by 
q block of all zeroes, corresponding to the remaining eigenvectors {zn+m+....+1, .... , 
zn+m+....+q}.  Hence the matrix for T  = S+cI, in this basis, is the same as just described, except 
also with c’s everywhere on the diagonal.  QED. 
 
Eg:  A linear map T:R2-->R2 with minimal polynomial (X-c)2 has Jordan matrix with columns 
(c,1), (0,c).  The derivative D:V-->V on polynomials of degree at most 2, has minimal polynomial 
X3, Jordan basis {X2, 2X, 2} and Jordan matrix with columns (0,1,0), (0,0,1), (0,0,0).  
 
Cor:  If the field of scalars is algebraically closed, e.g. complex numbers, the minimal polynomial 
has the form in the theorem, so every linear map has a Jordan matrix, (not always diagonal). 
 
An infinite dimensional example: V = continuously differentiable functions on the real line, W 
= continuous functions. The derivative map D:V-->W, is linear and surjective by the fundamental 
theorem of calculus. The kernel of D is all constant functions by the mean value theorem.  For 
any scalar c, f(x) = ecx is an eigenvector for D with eigenvalue c.  The theory of Fourier series 
tries to approximate arbitrary functions by linear combinations of these eigenfunctions of D. 
 
Ex:  If Lf = f(n)+an-1f(n-1)....+a1f’+a0f = 0 is a linear differential operator with constant 
coefficients ai, and if the characteristic polynomial Xn+an-1Xn-1+....+a1X+a0 of L factors into a 
product of distinct linear factors (X-ci), then the eigenfunctions f(x) = ecix, for i = 1,...,n, are a 
basis of eigenvectors of the solution space V = {f: Lf  = 0}.  [For n = 1, and any solution f, 
(f/ecx)’ = 0, so dimker(D-c) = 1.  So ker((D-c1)(D-c2)...(D-cn)) = (D-c1)-1(ker(D-c2)...(D-cn)) 
has dimension  ≤ n.  Then prove {ecix: i = 1,..,n}, is independent.] 
 
If the characteristic polynomial factors as a product of powers (X-ci)ri, with some ri  > 1, there is 
no eigenbasis of N(L) = {f: Lf  = 0}, but there is a Jordan basis {... ; ecix, xecix, (1/2)x2ecix,..., 
(1/(ri-1)!)xri-1ecix; ...}.  In particular, N(L) still has dimension n = degree of the polynomial. 



 
Rational Canonical form, Cayley - Hamilton theorem. 
 The same ideas extend further when the minimal polynomial of a linear map T:V-->V 
factors as a product of (not necessarily linear) irreducible factors, say as P1r1....Pnrn, where the 
Pi are distinct and irreducible in k[X], and k is the field of scalars.  The same arguments show V is 
isomorphic to the product of the subspaces Vi = ker(Piri), which are invariant under the action of 
T.  If the power ri = 1, we can view Vi as a vector space over the field k[X]/( Pi), since the 
Euclidean algorithm for polynomials shows that one can divide in this quotient ring.  I.e. k[X] is a 
k vector space, and the multiples of P = Pi form a subspace, so the set of equivalence classes of 
polynomials k[X]/(P), (where two polynomials R,S are equivalent if P divides R-S), is a k vector 
space of dimension d = deg(P), with basis [1], [X], [X2],...,[Xd-1].  It is also a ring containing k 
as a subring, and since P is irreducible, for any polynomial R not divisible by P, we have RS +PQ 
= 1, for some polynomials S,Q.  Hence in k[X]/(P) division by R is equivalent to multiplication 
by S, so k[X]/(P) is a field.   
 Recall dividing by ≠ 0 scalars was the key to producing vector bases, so V is also a vector 
space over the field k[X]/(P) if the minimal polynomial P of T is irreducible.  A basis for V over 
this field, consisting of s vectors, decomposes V into a product of s subspaces, each one d - 
dimensional over k and invariant under T, i.e. under multiplication by X.  If v ≠ 0 in V, the 
k[X]/(P) - subspace spanned by v, has k - basis {v, Tv, T(T(v)),..., Td-1(v)}, corresponding to 
{1, X, X2,....,Xd-1}.  Since P(v) = 0, if P(X) = a0 + a1X + a2X2+....+ad-1Xd-1 + Xd, then Td(v) 
= -a0v - a1T(v) - a2T2(v)-....-ad-1Td-1(v), so the matrix of T in this k - basis has columns of 
form (0,1,0,...,0), (0,0,1,0,...,0), ....., (-a0, -a1, -a2, ...., -ad-1).  Thus the matrix of T acting on a 
subspace with irreducible minimal polynomial P, and having dimension s over k[X]/(P), consists 
of s d-by-d blocks of that same form.  Thus, if the minimal polynomial of T is a product of 
distinct irreducible factors Pi, the k - matrix of T in a suitable basis consists of a finite number si 
of such di-by-di blocks for each factor Pi. 
 
Eg:  If T:V-->V is a linear map on a real vector space, with minimal polynomial X2+1, V is a sum 
of subspaces isomorphic to R[X]/(X2+1), i.e. of 2 dimensional real subspaces, each of them one - 
dimensional over the field R[X]/(X2+1).  This quotient field is isomorphic to the complex 
numbers C, where X corresponds to i = sqrt(-1), so the operator T on this space corresponds to 
multiplication by i.  If V has dimension s over C, the real rational canonical matrix of T on V, 
consists of exactly s blocks, and each block is 2 by 2, with columns (0,1), (-1,0). 
 
Rmk: A rational canonical matrix always exists, composed of blocks like those above, but we 
must give a different proof for decomposability of the space when the minimal polynomial of T 
has repeated irreducible factors.  We have already split our space as a product of subspaces 
ker(Piri), but now the ring k[X]/(Pr) operating on ker(Pr), is no longer a field, so we must still 
decompose each subspace ker(Pr) into “cyclic”  T - invariant subspaces.  E.g. if V = ker(Pr) 
where P is irreducible, T will always have a matrix of blocks as above, but the coefficients in the 
last column of each block will be those of some power Ps of P, with s ≤ r.   



 The simplest case is dim(ker(Pr)) = rd where d =deg(P).  Then for any v with Pr(v) = 0 
but Pr-1(v) ≠ 0, a basis for V is given by {v, T(v),...,Tdr-1(v)}, and the k- matrix for T is the one 
block associated to the coefficients of Pr.  Thus there is no problem when dimk(ker(Piri)) = 
ri.deg(Pi) for all i, since no decomposition is necessary.  In the general case, the spaces ker(Piri) 
may be bigger.  There is always a vector v in ker(Pr) with Pr-1(v) ≠ 0, but then we must prove 
ker(Pr) splits as a product of the rd dimensional subspace spanned by {v, T(v),....,Tdr-1(v)}, and 
another T - invariant subspace.  Then we can finish by induction on dimension.  To get this 
splitting we can adapt the following result. 
 
Splitting Lemma: If G is a finite abelian group of order pr, p is prime, w an element generating a 
subgroup (w) of maximal order, and G/(w) = (z) is cyclic, then G is isomorphic to (w) x (z). 
Pf: Assume f:G-->(z) sends y to z, and has kernel (w).  If ord(z) = pa, [paz = 0, but no smaller 
multiple = 0] then ord(y) = pa+b, and ord(w) = pa+b+c, where a,b,c, ≥ 0.  We seek u = y+tw 
with pau = 0.  Then f(u) = z, so pa ≥ ord(u) ≥ ord(z) = pa, so mapping z to u splits G as 
(w)x(u), isom. to (w)x(z).  But f(pay) = paz = 0 so pay is in (w), and no smaller multiple is, so 
(y)∩(w) = (pay) has order pb, so (pay) = (pa+cw).  So for some s, pay = spa+cw = pa(spcw), 
and pa(y-spcw) = 0.  So let u = (y-spcw).  QED. 
 
Cor: If G is a finite abelian p group, ord(w) maximal, then G/(w) is a product of cyclic groups 
(zi) by induction.  If f:G-->G/(w) = ∏(zi) sends yi to zi, apply lemma to the map f:(w,yi)-->(zi), 
with kernel (w).  Mapping each zi to the corresponding ui in G splits G as (w) x ∏(ui). 
 
Ex: Prove the splitting lemma needed for the general rational canonical form, with an irred. poly P 
replacing the prime integer p. 
 
Eg: If T has minimal polynomial Xr, T has a matrix of blocks of size ≤ r, with columns 
(0,1,0,...,0), (0,0,1,0,...,0), ......, (0,0,.......,0,1, (0,0,....,0).  This is both the Jordan and rational 
canonical form of T.   
 
Rmk: In the discussion of Jordan form, the Jordan matrix for T on the subspace Vi, equals ciId 
plus the rational canonical matrix of the nilpotent operator T-ci.  So Jordan form is a special case 
of rational canonical form. 
 
Summary review of determinants. 
For actually calculating diagonal, Jordan, and rational canonical forms, we require the abiklity to 
compute minimal polynomials and eigenvalues.  For this determinants are useful. 
 
Definition: If A is an n x n matrix over R, define for each (i,j) with 1≤i,j≤n, let Aij = the (n-1)x 
(n-1) matrix obtained by deleting from A the ith row and jth column.  Then define determinants 
recursively as follows:  If n=1, and A = (a) define D(A) = a.  If we have defined D for all (n-1) 
x(n-1) matrices, and if A is in Matn(R), set D(A) = a11 D(A11) - a12 D(A12) _ .... _a1n D(A1n), 
(expansion by the first row). 



 
Example: det |a b |   = ad-bc.      det | a b c | =  a(ei-fh) – b(di-fg) + c(dh-eg). 
  |c d|                             |d e f  | 
                                                           |g h i  | 
Remark: We can expand determinants also by columns; i.e. for any choice of column, say j, we 
have D(A) = ∑i (-1)i+j aij D(Aij). 
 
Corollary: If A is upper or lower triangular, e.g. diagonal, then D(A) = ∏aii, the product of the 
diagonal entries.  If A is a matrix with two equal rows or columns, then D(A) = 0. 
 
Theorem: D(A) is n-linear and alternating as a function of the rows and columns of A.  Hence, 
i) If A' is the result of interchanging two rows or columns of A, D(A') = - D(A). 
ii) If A' is the result of adding to one row (or column) of A, a scalar multiple of another row (or 
column), then D(A') = D(A). 
iii) If A' is the result of multiplying a row or column of A by a scalar c, then D(A') = c.D(A). 
 
Rmk: A matrix can be rendered upper triangular by repeating operations i) and ii). 
 
Prop: (i) D(A*) = D(A), where A* is the transpose of A. 
(ii) If A,B are n x n matrices, then D(AB) = D(A)D(B); in particular if B is invertible then  
D(B-1AB) = D(A), so all matrices for the same linear map f:V-->V (i.e. wrt any  basis of V), 
have the same determinant, so we can define the determinant of a linear map V-->V. 
(iii) If A is a square matrix, then A is invertible if and only if D(A) ≠ 0.  
(iv) Given A, let B = (bij) be the matrix: bij = (-1)i+j D(Aji).  (Note the interchange of indices.)  
Then AB = D(A)I = BA.  Thus if D(A) ≠ 0, then D(A)-1B is a (two sided) inverse for A. 
 
Ex. Define T:k^3-->k^3 by T(e1) = (-1,1,1), T(e2) = (1,-1,1), T(e3) = (1,1,-1).  Find  the 
characteristic and minimal polynomials of T, a basis of eigenvectors for T, and a matrix B such 
that B^(-1)[T]B  is diagonal, where [T] is the standard matrix for T. 
 
The characteristic polynomial of a linear map on a finite dimensional space 
 Since all matrices for a linear map T:V-->V, in all bases, have the same determinant, define 
the “characteristic polynomial” of T as det(X.I-T).  It follows from expanding about the last 
column that a rational canonical block matrix satisfies its own characteristic polynomial.  In  fact 
the map acts cyclically on all but the last vector, so no power of T smaller than the size of the 
block is a linear combination of smaller powers, so the polynomial associated to the last column 
of a rational canonical block is both the minimal and characteristic polynomial.  Since every linear 
map  T:V-->V has a rational canonical form, we obtain: 
 
Thm(Cayley Hamilton):  Every linear map T:V-->V on a finite dimensional space V, satisfies 
its characteristic polynomial, whose degree equals dim(V).  In particular the minimal polynomial 
divides the characteristic polynomial, and hence has degree ≤  dim(V). 
 
 Examining the rational canonical decomposition, the characteristic polynomial of T equals 



the product of the associated polynomials of every block in its rational canonical matrix, and the 
minimal polynomial equals only the product of the polynomials associated to the largest block 
for each irreducible factor.  In particular the minimal and the characteristic polynomial have the 
same irreducible factors.  So if one computes a determinant and can then factor the characteristic 
polynomial into irreducible factors Pi, one can explicitly compute canonical forms of a matrix by 
finding bases for the kernels of the powers Pis(T), s ≤ ri. 
 
Ex: A scalar c is an eigenvalue of T if and only if det(T-c.I) = 0, iff c is a root of the characteristic 
polynomial of T, if and only if c is a root of the minimal polynomial of T. 
 
Ex:  Find all Jordan and rational canonical forms of linear maps of R3 with minimal polynomials 
(X-2)3, (X-2)2, and (X-2). 
 
Ex.  Find the Jordan forms of these matrices: 
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4 !1

4 0

" 

# 
$ 

% 

& 
'  . (ii) B = 

0 !1 2

3 !4 6

2 !2 3

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

.  (iii) C = 

2 0 0 0

!1 1 0 0

0 !1 0 !1

1 1 1 2

" 

# 

$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 

.   

Ex. Every linear map from R^3 to itself has at least one eigenvector. 
 
Ex. A linear map of R^3 that preserves dot products is composed of rotations and reflections. 
 
Ex. Give a detailed proof of Cayley - Hamilton. 


