

Sponsored by: UGA Math Department and UGA Math Club

Team Round / 1 hour / 210 points

October 20, 2018
No calculators are allowed on this test. You do not have to provide proofs; only the answers matter. Each problem is worth 70 points, for a total of 210 points.

Problem 1 (Triangles and tribulations). How many triangles are in the figure below? Only count those triangles whose edges lie on the lines shown.

Problem 2 (Circular reasoning). Figures 1-3 below are the first three in a sequence of figures.

Figure 1

Figure 2

Figure 3

We construct Figure 2 from Figure 1 by replacing each number $k(k=0,1,2)$ in Figure 1 with $k+(3 \times$ Figure 1). In general, we construct Figure $(n+1)$ from Figure n by replacing the number k in Figure 1 with $k+(3 \times$ Figure $n)$:

We now define the distance between two nonnegative integers a, b as follows: Draw a Figure that includes both a and b, and let $N(a, b)$ be the number of circles that contain both a and b. (You might check that this number doesn't change if you use a different figure containing both a and b.) Then define the distance from a to b by

$$
d(a, a)=0, \quad \text { and } \quad d(a, b)=\frac{1}{N(a, b)} \text { if } a \neq b
$$

For example, you can see from Figure 2 (or Figure 3) that $d(0,3)=\frac{1}{2}$ and $d(0,4)=1$.

What is $d(2018,8102) ?$

Problem 3 (A Farey tale). For each positive integer n, the Farey sequence of order n, denoted \mathfrak{F}_{n}, is the (bidirectionally infinite) list of reduced fractions of denominator at most n, arranged in increasing order. For example, the terms of \mathfrak{F}_{5} belonging to the interval $[1,2]$ are

$$
\frac{1}{1}, \frac{6}{5}, \frac{5}{4}, \frac{4}{3}, \frac{7}{5}, \frac{3}{2}, \frac{8}{5}, \frac{5}{3}, \frac{7}{4}, \frac{9}{5}, \frac{2}{1} .
$$

Since $\sqrt{2}$ is irrational, in each \mathfrak{F}_{n} there are consecutive fractions $\frac{a}{b}$ and $\frac{c}{d}$ with

$$
\frac{a}{b}<\sqrt{2}<\frac{c}{d} .
$$

(For example, when $n=5$ we have $\frac{a}{b}=\frac{7}{5}$ and $\frac{c}{d}=\frac{3}{2}$.) Find the value of $\frac{a+c}{b+d}$ when $n=40$.

RETURN THIS SHEET

Team ID:

Team name:

Answer 1:

Answer 2:

Answer 3:

