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A necessary and sufficient condition for Riemann’s

singularity theorem to hold on a Prym theta divisor

Roy Smith and Robert Varley

Abstract

Let (P,Ξ) be the naturally polarized model of the Prym variety associated to the étale
double cover π : C̃ → C of smooth connected curves defined over an algebraically
closed field k of characteristic �= 2, where genus(C) = g � 3, Pic(2g−2)(C̃) ⊃ P =
{L ∈ Pic(2g−2)(C̃) : Nm(L) = ωC and h0(C̃,L) is even} is the Prym variety, and
P ⊃ Ξ = {L ∈ P : h0(C̃,L) > 0} is the Prym theta divisor with its reduced
scheme structure. If L is any point on Ξ, we prove that ‘Riemann’s singularity theorem
holds at L’, i.e. multL(Ξ) = (1/2)h0(C̃,L), if and only if L cannot be expressed as
π∗(M)(B) where B � 0 is an effective divisor on C̃, and M is a line bundle on C with
h0(C,M) > (1/2)h0(C̃,L). This completely characterizes points of Ξ where the tangent
cone is the set theoretic restriction of the tangent cone of Θ̃, hence also those points on
Ξ where Mumford’s Pfaffian equation defines the tangent cone to Ξ.

Introduction

A fundamental tool for analyzing Jacobian varieties (J(C),Θ(C)) of curves C of genus g is the link
between linear systems on C and the geometry of Θ provided by Riemann’s singularity theorem.
Points of Θ correspond to effective line bundles L of degree g − 1 on C, and at such a point
multL(Θ)h0(C,L). Thus ‘Brill Noether’ loci (line bundles in Picg−1(C) with a given number of
sections), gain intrinsic meaning on Θ as sets of points of fixed multiplicity. Brill Noether homology
computations then imply the existence of points of given multiplicity on Θ. This impacts the Torelli
problem, since the projective tangent cone to Θ at L has a description by the linear system |L|
which implies the cone contains the canonical model of C if multL(Θ) � 2. The goal of this paper is
to make the analogous multiplicity correspondence for classical Prym varieties almost as complete,
with precise conditions for its failure. If (P,Ξ) is the Prym variety of an étale connected double
cover π : C̃ → C of a smooth curve C of genus g, points of Ξ are effective line bundles L in
Pic2g−2(C̃) with Nm(L) = ωC and h0(C̃,L) even. An equation ϑ̃ for Θ̃ restricts on P ⊂ Pic2g−2(C̃)
to the square of an equation ξ for Ξ, so we expect multL(Ξ) = (1/2)h0(C̃,L), and this holds if
and only if the leading term of (a Taylor series for) ϑ̃ is the square of the leading term of ξ. If the
equality multL(Ξ) = (1/2)h0(C̃,L) holds, we say ‘RST’ holds at L. Precise criteria for RST to hold
thus would again let one interpret Brill Noether calculations intrinsically on Ξ. Since the projective
tangent cone to Ξ at L with multL(Ξ) � 2 contains the Prym canonical model of C when RST
holds, but not necessarily when it fails, this would illuminate the open Prym Torelli problem as well.

The criterion in this paper is as follows. With notation as above, call L on Ξ ⊂ Pic2g−2(C̃)
‘very exceptional’ if there is a line bundle M on C, with 2h0(C,M) > h0(C̃,L) and L ⊗ π∗(M−1)
effective. Then RST holds at L if and only if L is not very exceptional.
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R. Smith and R. Varley

Discussion of prior work
A sufficient condition for RST to hold (injectivity of the Prym Petri map) was given by Welters
in [Wel85], who checked it at the boundary of moduli and deduced that RST holds everywhere
on a ‘sufficiently general’ Prym variety. Important though this is, the difficulty of computing the
condition for any specific smooth curves left open such basic problems as the density, even the
existence, of double points in the ‘stable’ singular locus for specific Prym varieties. That is, Brill
Noether calculations imply that the locus {L ∈ Ξ : h0(C̃,L) � 4} is of codimension � 6 and non-
empty if dim(P ) � 6, but the existence of points in this locus with multiplicity exactly 2 on Ξ does
not follow without RST for Pryms. The density was settled in [SV02, Theorem 3.5, p. 245] using
the case h0(C̃,L) = 4 of the present result.

The present result was proved in the case h0(C̃,L) = 2 by Mumford. His hypothesis on L
[Mum74, Proposition, p. 343] has two natural generalizations for higher values of h0(C̃,L): (a) the
notion of ‘very exceptional’ used here (condition ii in Theorem 0.1 below); and (b) his ‘case 1’
[Mum74, p. 344] (where he assumes only h0(C,M) � 2), now called ‘exceptional’. Since RST can
hold at ‘case 1’ points [SV01, Example 2.18], generalization (b) does not fit the RST problem.
In [Sho84, Lemma 5.7, p. 121], Shokurov observed that Mumford’s argument shows that RST fails
at L on Ξ, if h0(C̃,L) = 4, L ⊗ π∗(M−1) effective and h0(C,M) � 3. The same argument also
works for higher values of h0(C̃,L), (cf. Lemma 2.4 below). Thus, after we checked the converse
[SV02, Remarks 3.7(ii)] in the case h0(C̃,L) = 4, we were led to conjecture, in general, that L ‘very
exceptional’ should not only be sufficient, but also necessary for RST to fail. The following is the
precise theorem proved here.

Theorem 0.1. Given a connected étale double cover π : C̃ → C of a smooth curve C with g(C) � 3,
associated involution ι : C̃ → C̃, principally polarized Prym variety Ξ ⊂ P ⊂ Pic2g−2(C̃), and a
point L of Ξ, the following conditions are equivalent.

i) Riemann’s singularity theorem fails at L, i.e. multL(Ξ) �= (1/2)h0(C̃,L); necessarily then
multL(Ξ) > (1/2)h0(C̃,L).

ii) A pair of effective line bundles (M,N ) exists such that M is in Pic(C), N is in Pic(C̃),
L ∼= π∗(M) ⊗N , and 2h0(C,M) > h0(C̃,L).

iii) There is a unique pair of effective line bundles (M,N ) such that M is in Pic(C), N is in Pic(C̃),
L ∼= π∗(M)⊗N , 2h0(C,M) > h0(C̃,L) and |N | contains a divisor D with ‘no invariant part’,
i.e. such that supp(D) ∩ supp(ι∗(D)) = ∅; necessarily then h0(N ) = 1.

In terms of the skew symmetric pairing β : H0(L)×H0(L) → T ∗
0 (P ) (see § 2.1), these are equivalent

to the following.

iv) The polynomial det(β) (in terms of any basis for H0(L)) is identically zero on T0(P ).
v) The pairing β has an isotropic subspace W ⊂ H0(L) with dim(W ) > (1/2)h0(C̃,L).

Remark. Since det(β) = (Pf(β))2, it follows that Mumford’s Pfaffian equation Pf(β) = 0 is an
equation for the tangent cone CL(Ξ) if and only if condition ii does not hold.

1. Definitions and conventions

The basic reference for the theory of Prym varieties is [Mum74]. Throughout this paper, π : C̃ → C
is a connected étale double cover of a smooth curve C of genus g � 3 over an algebraically closed
field k of characteristic �= 2, (P,Ξ) is the canonically polarized Prym variety, embedded in Pic(C̃)
by Pic2g−2(C̃) ⊃ P = {L : Nm(L) = ωC and h0(L) is even}, Nm: Pic(C̃) → Pic(C) is the norm
map associated to π, and Θ̃ · P = 2Ξ, where Ξ = {L ∈ P : h0(L) > 0} is the distinguished model
of the Prym theta divisor. If η is the unique non-zero line bundle on C such that π∗(η) = OC̃ ,
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Riemann’s singularity theorem on a Prym theta divisor

then η2 ∼= OC and the pair (C, η) determines both C̃ and the double cover π, and hence also the
equivalent fix point free involution ι : C̃ → C̃. Writing ω for ωC and ω̃ for ωC̃ , the cotangent space to
Pic2g−2(C̃), which is isomorphic to H0(C̃, ω̃), splits under the involution into the sum of invariant
and anti-invariant subspaces isomorphic, respectively, to H0(C,ω) and H0(C,ω ⊗ η). We denote
that a line bundle M is effective by writing M � 0 and write L � M to mean that (L −M) � 0.
An effective divisor D has ‘no invariant part’ if and only if supp(D) ∩ supp(ι∗(D))∅; for example,
the trivial divisor is an effective divisor with no invariant part.

Next we introduce a useful sequence of definitions of pairs of line bundles (M,N ) which may
be associated to a point L of Ξ, characterized by increasingly restrictive properties.

Definition 1.1. Given π : C̃ → C, Prym variety (P,Ξ) and L ∈ Ξ, we say (M,N ), with M in
Pic(C), N in Pic(C̃), is an effective pair for L if:

i) M � 0,N � 0;
ii) L ∼= π∗(M) ⊗N .

Every point L of Ξ admits an effective pair, e.g. with M = OC .

Definition 1.2. An effective pair (M,N ) is called exceptional if h0(C,M) � 2. A point L on Ξ is
an ‘exceptional singularity’ of Ξ if and only if L admits an exceptional pair. By [Mum74, pp. 342–3]
an ‘exceptional singularity’ is always a singular point of Ξ.

Definition 1.3. An effective pair (M,N ) for L is called a (∗) pair, if the following inequality holds:
(∗) 2h0(M) + h0(N ) � h0(L) + 3. Since h0(N ) � h0(L), every (∗) pair is exceptional.

Definition 1.4. An effective pair (M,N ) is very exceptional or a Shokurov pair for L if 2h0(M) >
h0(L). L is a ‘very exceptional’, or ‘Shokurov’ singularity of Ξ, if and only if L admits a Shokurov
pair. Since h0(L) is even, every Shokurov pair is a (∗) pair.

Definition 1.5. An effective (exceptional, (∗), etc.) pair (M,N ) is maximal if |N | contains a
divisor with no invariant part.

Remark. Every point L of Ξ has a maximal effective pair, since if M,N satisfy Definition 1.1,
then N = O(B + π∗(A)), where A � 0, B � 0 are effective divisors, and B has no invariant part.
Thus (M⊗O(A),O(B)) is a maximal effective pair for L. Since this construction cannot decrease
the value of h0(M) it turns an exceptional pair into a maximal exceptional pair, and a Shokurov
pair into a maximal Shokurov pair (and shows that non-maximal versions of these pairs are not
unique). It is not clear that when this construction is applied to a (∗) pair whether the resulting
maximal pair still satisfies (∗). As to uniqueness, we show that L has at most one maximal Shokurov
pair (Lemma 5.4) and, equivalently, at most one maximal (∗) pair (Lemma 5.5).

2. Isotropic subspaces for the Mumford pairing

We recall the skew symmetric pairing introduced by Mumford [Mum74] and generalize [Mum74,
Proposition, p. 343] to a correspondence between isotropic subspaces and certain linear series on
the base curve C.

2.1 Definition of the pairing β : H0(L) × H0(L) → H0(C,ω ⊗ η)
i) For line bundles L and L′, and sections s ∈ H0(L) and t ∈ H0(L′), we use the notation s · t

for the cup product in H0(L ⊗L′).
ii) For L ∈ Ξ and (s, t) ∈ H0(L)×H0(L), let 〈s, t〉 = s·ι∗(t) ∈ H0(ω̃), via the composition [Mum74,

p. 343, line 4], H0(L) ×H0(L) ∼= H0(L) ×H0(ι∗(L)) ∼= H0(L) ×H0(ω̃ ⊗ L∗) → H0(ω̃).

3
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R. Smith and R. Varley

iii) Then let β(s, t) = (〈s, t〉−〈t, s〉) = s · ι∗(t)−t · ι∗(s), so the map β : H0(L)⊗H0(L) → H0(ω⊗η)
∼= {the (−1) eigenspace for ι∗ acting on H0(ω̃)} is skew symmetric; see [Mum74, p. 343],
[Wel85, p. 673].

iv) For each z in T0P = H0(ω ⊗ η)∗, let βz : H0(L) ×H0(L) → k denote the scalar valued skew
pairing taking (s, t) to β(s, t)(z)βz(s, t).

Lemma 2.2. Fix L ∈ Ξ and consider β : H0(L) ×H0(L) → T ∗
0 (P ) as in § 2.1, item iii.

i) Suppose M is a line bundle on C, Λ ⊂ H0(M) is a vector subspace of positive dimension �
defining a linear subsystem |Λ| ⊂ |M| (possibly with base points), B is an effective divisor on
C̃ such that L ∼= π∗(M)(B) and u ∈ H0(OC̃(B)) is an equation for B. Then π∗(Λ) ·u ⊂ H0(L)
is an isotropic subspace for β of dimension �.

ii) Conversely, any isotropic subspace W ⊂ H0(L) of positive dimension � has the form π∗(Λ) · u
as in part i. Moreover, we can choose Λ and u so that the divisor B = div(u) has no invariant
part; if this is done, then Λ, M, and B are determined uniquely by W .

Proof. i) Since pullback of sections π∗ : H0(C,M) → H0(C̃, π∗(M)) is injective, and multiplication
by u : H0(C̃, π∗(M)) → H0(C̃, π∗(M)(B)) is injective, the map Λ → H0(L), σ → π∗(σ) · u is an
isomorphism from Λ onto its image π∗(Λ) · u ⊂ H0(L), so dim(π∗(Λ) · u) = dim(Λ) = �. Now, if
σ, τ ∈ Λ, then β(π∗(σ) · u, π∗(τ) · u) = 〈π∗(σ) · u, π∗(τ) · u〉 − 〈π∗(τ) · u, π∗(σ) · u〉 = π∗(σ) · u ·
ι∗(π∗(τ) · u) − π∗(τ) · u · ι∗(π∗(σ) · u) = π∗(σ) · u · π∗(τ) · ι∗(u) − π∗(τ) · u · π∗(σ) · ι∗(u) = 0 by
the commutativity of multiplication of sections.

ii) Take s0 �= 0 in W and let ΨW/s0. Then Ψ ⊂ k(C̃) is an �-dimensional vector space of
rational functions on C̃ such that W = Ψ · s0. Now take any ψ ∈ Ψ. Then ψ = s/s0 for some
s ∈ W , and since W is isotropic we have 0 = β(s, s0) = 〈s, s0〉 − 〈s0, s〉 = s · ι∗(s0) − s0 · ι∗(s) =
ψ · s0 · ι∗(s0) − s0 · ι∗(ψ · s0) = ψ · s0 · ι∗(s0) − ι∗(ψ) · s0 · ι∗(s0) = (ψ − ι∗(ψ)) · s0 · ι∗(s0). Since
s0 · ι∗(s0) �= 0, thus ψ − ι∗(ψ) = 0, so ψ = ι∗(ψ). Hence there is a unique rational function ϕ on C
such that ψ = π∗(ϕ). Thus there is an �-dimensional vector space Φ ⊂ k(C) such that Ψ = π∗(Φ)
and W = π∗(Φ) · s0.

Now, if ϕ1, . . . , ϕ� is a basis for Φ, then D l.u.b. of the polar divisors (ϕ1)∞, . . . , (ϕ�)∞, is the
smallest effective divisor on C such that Φ ⊂ L(D), where L(D) = {ϕ ∈ k(C)∗ : div(ϕ) +D � 0}
∪ {0}. Set M0 = OC(D), σ ∈ H0(C,M0) the tautological equation for D, and Λ0 = Φ · σ.
Since Φ ⊂ L(D) then Λ0 ⊂ L(D) · σ = H0(C,M0) has dimension �.

Now ψ1 = π∗(ϕ1), . . . , ψ� = π∗(ϕ�) is a basis for Ψ = π∗(Φ) and π∗(D) = l.u.b. {(ψ1)∞, . . . ,
(ψ�)∞}. Since ψ · s0 is a regular section of L for every ψ in Ψ, (s0) � (ψi)∞, for i = 1, . . . , �, hence
(s0) � π∗(D). Thus B0 = (s0)−π∗(D) � 0 on C̃, hence u = s0/π

∗(σ) is a regular section of OC̃(B0).
Since s0 = π∗(σ) · u is a non-zero section of L, L ∼= π∗(M0)(B0), and W = Ψ · s0π∗(Φ) · π∗(σ) · u =
π∗(Φ · σ) · u = π∗(Λ0) · u, as desired.

This construction gives Λ0 and B0 such that Λ0 has no base divisor, rather than the desired
property that B0 has no invariant part. To get the representation in the lemma, let B0

∑
C̃ np · p

be the full base divisor of the linear system |W | (as in the construction above), and for each point
p̄ of C set mp̄ = min{np, np′}, where π−1(p̄){p, p′} for the double cover π : C̃ → C. Then the base
divisor can be written uniquely as B0 =

∑
C̃ np ·p =

∑
C mp̄ ·(p+p′)+

∑
C̃(np−mp̄) ·p = π∗(A)+B,

where A =
∑

C mp̄ · p̄ and B =
∑

C̃(np −mp̄) · p has no invariant part. If Λ0 is chosen as above,
τ is an equation on C for A, and v is an equation on C̃ for B, and we define Λ = Λ0 · τ , then
W = π∗(Λ) · v is a representation of W where div(v) = B has no invariant part. Both Λ and B
are uniquely determined by W , since the system |W | determines its base locus, the invariant part

4
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Riemann’s singularity theorem on a Prym theta divisor

π∗(A) of its base locus, thus also the ‘non-invariant’ part B. Then |W | − B is the pullback of a
unique linear system |Λ| on C and Λ ⊂ H0(C,M) for a unique line bundle M.

Lemma 2.3. We keep the notation of Lemma 2.2.

i) Suppose M is a line bundle on C, h0(M) � 2 (but |M| is allowed to have base points), B is an
effective divisor on C̃ such that L ∼= π∗(M)(B) where B and B′ = ι∗(B) have disjoint supports,
and u ∈ H0(OC̃(B)) is an equation for B. Then π∗(H0(M)) ·u ⊂ H0(L) is a maximal isotropic
subspace for β of dimension h0(M) � 2.

ii) Conversely, any maximal isotropic subspace W ⊂ H0(L) of dimension � 2 has the form
π∗(H0(M)) · u as in part i, where both M and div(u) = B are uniquely determined by W .

iii) If two isotropic subspaces V,W ofH0(L) have non-zero intersection, then their span is isotropic.

Proof. Part ii is immediate from Lemma 2.2, part ii. Now let π∗(H0(M)) ·u be as in part i. Then by
Lemma 2.2, part i, we already know that π∗(H0(M)) · u ⊂ H0(L) is an isotropic subspace for β
of dimension h0(M) � 2, so it remains to prove maximality. If a non-zero element π∗(σ) · u of
π∗(H0(M)) · u belongs to another isotropic subspace, it belongs to one of form π∗(H0(M1)) · u1,
where div(u1) also has no invariant part. Then π∗(σ) · u = π∗(τ) · u1, for τ in H0(M1). Equating
invariant parts of divisors of these sections, we see that div(π∗(σ)) = div(π∗(τ)), so div(σ) = div(τ),
hence M = M1, div(u) = div(u1), hence π∗(H0(M)) · u = π∗(H0(M1)) · u1, hence π∗(H0(M)) · u
is maximal isotropic. For part iii, the proof of part i shows that V,W lie in a common maximal
isotropic subspace. (The case dim(V ) � 1 or dim(W ) � 1 is trivial.)

Remark. It follows from Lemma 2.3, part iii, that if ker(β){v : β(v,H0(L)) = 0} �= {0}, then H0(L)
is β-isotropic, i.e. β is identically zero (since ker(β) lies in every maximal isotropic subspace).
In particular, unlike scalar valued skew pairings, neither property iv nor v of Theorem 0.1 implies
that ker(β) �= 0.

Lemma 2.4. If L can be expressed as π∗(M)(B) for M ∈ Pic(C) with B � 0 on C̃, and h0(M) >
(1/2)h0(L), then det(β) is identically zero on T 0(P ). Here det(β) is the polynomial defined by the
determinant of a matrix for β with respect to a basis of H0(L).

Proof. Note that det(β) = 0 if for all z in T0(P ), the determinant of a matrix for βz is zero. If L ∼=
π∗(M)(B) for M ∈ Pic(C) with h0(M) > (1/2)h0(L), and B � 0 on C̃, let u ∈ H0(C̃,OC̃(B)) be
a defining equation for B and consider W = π∗(H0(C,M)) · u ⊂ H0(C̃,L). Then W is β-isotropic
by Lemma 2.2, part i and dim(W ) > (1/2) dim(H0(L)), hence each (scalar-valued) skew-symmetric
form βz on H0(L) (for z ∈ T 0(P )), is degenerate. Thus det(βz) = 0 for every z ∈ T0(P ).

Producing β-isotropic subspaces of H0(L) when det(β) = 0

We begin the proof of the key implication iv implies ii in Theorem 0.1. Let L be in Ξ and β
the vector valued pairing in § 2.1, item iii, and for each z in T0P view the scalar valued pairing
βz in § 2.1, item iv, as a linear map λz : H0(L) → H0(L)∗. That is, for s in H0(L), λz(s) =
βz(s, ·) is a linear functional on H0(L). Then the map taking z to λz is a linear map λ : T0(P ) →
Homk(H0(L),H0(L)∗). Since β is skew symmetric, rank(λz) is even, and since dimH0(L) is even,
dim(ker(λz)) is also even.

Lemma 2.5. With notation as above let r be the maximal rank of all maps λz in the image of λ,
and let U ⊂ T0(P ) be the dense Zariski open set of those z such that rank(λz) = r. If det(β) = 0,
then for all z in U , ker(βz) = ker(λz) ⊂ H0(L) is a non-trivial isotropic subspace for β of positive
even dimension h0(L) − r � 2.

5
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R. Smith and R. Varley

Proof. The dimension statements follow from the remarks above, so it suffices to prove ker(βz) is
an isotropic subspace. Fix z0 in U , and denote the corresponding scalar pairing and linear map by
β0 and λ0. Denote ker(β0) = ker(λ0) = V ⊂ H0(L) and im(λ0) = Y ⊂ H0(L)∗.

Claim 2.6. V = Y ⊥, under the identification H0(L)∗∗ = H0(L).

Proof. As usual, Y ⊥ = (im(λ0))⊥ = ker(λ∗0). Since β is skew symmetric the map λ0 is skew sym-
metric in the sense that λ∗0 = −λ0, so Y ⊥ = ker(λ∗0) = ker(λ0) = V .

Now to show V is isotropic for β, it suffices to prove the following.

Claim 2.7. β(V, Y ⊥) = 0.

Proof. Since λ : T0(P ) → Homk(H0(L),H0(L)∗) is a linear map, it equals its own derivative, and by
the definition of U , λ maps U into the ‘constant rank r locus’ in Homk(H0(L),H0(L)∗). Hence, for
any z0 in U , λ maps the tangent space to U at z0, into the tangent space to the rank r locus. Since U
is open and dense in T0(P ), the tangent space to U at z0 is all of T0(P ). Since the tangent space at λ0

to the rank r locus is the space of linear maps T : H0(L) → H0(L)∗ such that T (ker(λ0)) ⊂ im(λ0),
i.e. such that T (V ) ⊂ Y , it follows for all z in T0(P ) that λz(V ) ⊂ Y . In particular, for all t in Y ⊥

and all s in V , λz(s)(t) = 0 for all z in T0(P ). That is, βz(s, t) = 0 (in k) for all s in V , all t in Y ⊥

and all z in T0(P ). Thus β(s, t) = 0 (in T ∗
0 (P )) for all s in V and all t in Y ⊥, as claimed.

Remark. By Lemma 2.5, the failure of RST provides many isotropic subspaces {ker(βz)} of dimen-
sion � 2 for β, arising from (possibly many different) line bundles {Mz} on C as in Lemma 2.2.
By Lemma 2.2, part ii, RST can fail only at an exceptional line bundle L, thus giving an alternate
proof of Theorem 2.1 of [SV01]. We want to apply Lemma 2.3, part iii, to combine non-trivial
isotropic subspaces of H0(L) and deduce the existence of one very large isotropic subspace arising
from one line bundle M on C with 2h0(M) > h0(L).

3. The Segre inequality

For any pair (M,N ) of effective line bundles, M in Pic(C), N in Pic(C̃), such that L ∼= π∗(M)⊗N ,
the bilinear map H0(M) × H0(N ) → H0(L) taking (σ, u) → π∗(σ) · u, induces a morphism on
projective spaces γ : PH0(M) × PH0(N ) → PH0(L), since π∗(σ) · u �= 0, if σ �= 0 and u �= 0.

Lemma 3.1. If h0(M), h0(N ) � 2, and the morphism γ : PH0(M) × PH0(N ) → PH0(L) defined
above is an injection, then 2h0(M) + 2h0(N ) � h0(L) + 4.

Proof. Note that a map γ : P(A) × P(B) → P(C) induced by a bilinear map of vector spaces
A × B → C, (a, b) → a · b, is injective only if it embeds. That is, let (x̄, ȳ) represent a non-zero
tangent vector at ([v], [w]) to P(A)× P(B), where (x, y) is in A×B, x is determined modulo v and
y is determined modulo w. If the derivative of γ takes (x̄, ȳ) to x · w + v · y = 0̄ modulo v ·w, i.e. if
x ·w+ v · y = a(v ·w), then γ([v], [y− (aw/2)]) = γ([(av/2)−x], [w]). That (x̄, ȳ) is non-zero means
x is not a multiple of v or y is not a multiple of w, hence γ is not injective if it does not embed.

Now the bilinear map H0(M) ×H0(N ) → H0(L) factors through the universal map H0(M) ×
H0(N ) → H0(M) ⊗H0(N ) followed by a linear map µ : H0(M) ⊗H0(N ) → H0(L). The map γ
on projective spaces thus factors via the ‘Segre map’ PH0(M) × PH0(N ) → P(H0(M) ⊗H0(N ))
followed by the rational (not necessarily surjective) ‘projection’, P(H0(M) ⊗H0(N )) ��� PH0(L),
with center P(V ) where V ker(µ). Thus dim(P(V )) � h0(M) · h0(N ) − h0(L) − 1. (When V =
{0} put dim(P(V )) = −1.) If S is the ‘Segre variety’ which is the image of the Segre map in
P(H0(M) ⊗ H0(N )), then since π∗(σ) · u �= 0 when neither of σ, u is zero, no point of S lies on
P(V ). Since γ is an embedding, the projection of S from P(V ) is also an embedding, so P(V )

6

November 17, 2003 Marked proof Ref: CMAT0032/26237e Sheet number 6



PR
O

O
F

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Riemann’s singularity theorem on a Prym theta divisor

cannot meet Sec(S) (the closure of the set of secants of S). Thus dim(P(H0(M) ⊗ H0(N ))) >
dim(P(V ))+dim(Sec(S)) � (h0(M) ·h0(N )−h0(L)−1)+dim(Sec(S)). Hence h0(M) ·h0(N )−1 >
(h0(M) · h0(N ) − h0(L) − 1) + dim(Sec(S)), so h0(L) > dim(Sec(S)).

Under the isomorphism P(H0(M)⊗H0(N )) ∼= P(Hom(H0(M)∗,H0(N ))), the points of S corre-
spond to rank one homomorphisms, hence points of Sec(S) correspond to lines through the origin
in the affine cone of homomorphisms H0(M)∗ → H0(N ) of rank � 2. This cone has dimension
2h0(M)+2h0(N )−4 (cf. [Har92, Proposition 12.2, p. 151], hence h0(L) > dim(Sec(S)) = 2h0(M)+
2h0(N ) − 5, i.e. h0(L) + 4 � 2h0(M) + 2h0(N ).

4. Proof that L admits a maximal (∗) pair if RST fails

Given L in Ξ, and β the pairing in § 2.1, item iii, for each z ∈ T0P again view (cf. Lemma 2.5) the
scalar valued pairing βz as a linear map λz : H0(L) → H0(L)∗, and the map z → λz as a linear
map λ : T0(P ) → Homk(H0(L),H0(L)∗). Recall RST fails at L if and only if for all z, det(βz) = 0,
i.e. for every z, ker(βz) = ker(λz) has positive even dimension.

Definition 4.1. Let c = min{dim(ker(βz)), for all z �= 0 in T0(P )} be the minimum ‘corank’ of all
the scalar pairings βz. By the remarks above, c is even, and RST fails at L if and only if c � 2.

Assume that RST fails at L and let U ⊂ T0(P ) be the dense Zariski open set of those z such that
corank(βz) = c is minimal, as in Definition 4.1. By Lemma 2.5, the kernel of every scalar pairing
βz for z in U is a β-isotropic subspace of H0(L). Thus by Lemma 2.2, part ii, for every z in U
there exists a unique triple (Mz ,Λz, Bz) such that |kerβz |π∗(|Λz |) + Bz, where Λz ⊂ H0(C,Mz),
dim(Λz) = c � 2, and Bz � 0 has no invariant part. Next we want to produce from the collection of
exceptional line bundles {Mz}, one distinguished line bundle M0. Intuitively the argument is just
that the function z → Mz, defined by z → |ker βz| → (|ker βz | −Bz) → (π∗)−1(|ker βz| −Bz) → the
corresponding line bundle Mz on C, is a rational map from a rational variety to an abelian variety,
hence constant. To approximate this intuition, we will restrict z to a set where deg(Bz) is constant,
then finesse the fact that it is π∗ rather than its inverse which is a morphism.

Lemma 4.2. With notation as above, on some dense open subset U0 of U , the function z → Mz is
constant from U0 to Pic(C).

Proof. For each z in T0P , again view βz as a linear map λz : H0(L) → H0(L)∗, where λz is
linear in z. In some dense Zariski open subset U1 ⊂ U , we may choose bases for all the subspaces
ker(λz) ⊂ H0(C̃,L) which vary regularly with z in U1. If sz is one of these basis vectors for ker(λz),
the function z → sz defines a regular section s of the pullback of L to U1 × C̃, hence an effective
divisor div(s) on U1 × C̃ whose restriction to each curve {z} × C̃ is the divisor div(sz) in the linear
system |ker λz|. Then D = div(s) is a Cohen Macaulay subscheme of U1 × C̃ and the projection
D → U1 has all zero-dimensional fibers, hence the map D → U1 is flat (by [Mat70, (20F), p. 151],
and defines a morphism from U1 to the Hilbert scheme C̃(2g−2).

Next we make a family of the base divisors of the linear systems |ker λz|. If for all z in U1,
the set sz,1, . . . , sz,c is the basis for ker(λz) chosen as above, then on U1 the corresponding sections
s1, . . . , sc of the pullback of L to U1× C̃ define divisors div(s1), . . . ,div(sc) on U1× C̃. We throw out
of U1 the projection of pairwise intersections of distinct irreducible components of the union of the
supports of the divisors div(s1), . . . ,div(sc). If U2 ⊂ U1 is the resulting smaller dense Zariski open
subset of U , then gcd{div(s1), . . . ,div(sc)} = G is a divisor on U2 × C̃ whose restriction to {z}× C̃
is the base divisor of |ker λz| for every z in U2. Consider the union of components of the divisors
div(si) and their conjugates under the involution induced by ι on U2 × C̃, and throw out the closed
set in U2 over which two of these distinct components have non-empty intersection. We obtain a
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R. Smith and R. Varley

smaller dense Zariski open subset U0 ⊂ U2, such that the invariant part inv(G) of the divisor G,
restricts on each fiber {z} × C̃ with z in U0 to the invariant part of the base divisor of |ker λz|.
If B = G− inv(G), then for each z in U0 the restriction Bz is the part of the base divisor of |ker λz|
which is residual to the invariant part.

Then for each z in U0 we have |kerλz| = π∗(|Λz |)+Bz, where Bz has no invariant part, and |Λz|
is a uniquely determined linear series on C, as in Lemma 2.2, part ii. Since the divisors {Bz} form a
flat family over U0, they have a common degree d and determine a morphism U0 → C̃(d). Since U0

is irreducible and rational, the composition U0 → C̃(d) → Picd(C̃) is constant. To see this, join any
two points of U0 by a line A

1 in the affine space T0(P ) and extend the morphism U0∩A
1 → Picd(C̃)

to a morphism P
1 → Picd(C̃). The map P

1 → Picd(C̃) factors through Alb(P1) = {0} (cf. [Ser59])
and hence is constant. Thus for all z in U0, the divisors Bz are linearly equivalent, hence the linear
series π∗(|Λz|) are all contained in the common complete series Γ = |L(−Bz)|.

Now consider the inclusions ∪({z} × π∗(|Λz|)) ⊂ U0 × Γ ⊂ U0 × C̃(2g−2−d). Using the fram-
ing s1, . . . , sc, the set ∪({z} × |ker λz|) in U0 × C̃(2g−2) is isomorphic to U0 × P

c−1, and hence
is connected. Then under the proper injective morphism U0 × C̃(2g−2−d) → U0 × C̃(2g−2) send-
ing (z,D) to (z,D +Bz), the set ∪({z} × π∗(|Λz |)) in U0 × C̃(2g−2−d), maps homeomorphically to
∪({z}×|ker λz|), and hence is also connected. Then the projection of ∪({z}×π∗(|Λz|)) into C̃(2g−2−d)

is a connected subset S = ∪π∗(|Λz |) ⊂ Γ ⊂ C̃(2g−2−d) of the complete linear series Γ = |L(−Bz)|.
Since π∗ : C(g−1−d/2) → C̃(2g−2−d) is injective, there is a unique set R ⊂ C(g−1−d/2) such that
π∗(R) = S.

Claim. R is contained in a single complete linear series in C(g−1−d/2).

Proof. Since π∗ : C(g−1−d/2) → C̃(2g−2−d) is proper and injective, it is a homeomorphism onto its
image soR is connected. If we consider the two maps Nm: C̃(2g−2−d) → C(2g−2−d) and ‘multiplication
by two’ from C(g−1−d/2) to C(2g−2−d), then Nm(S) = Nm(π∗(R))2R. Since S ⊂ Γ = |L(−Bz)| and
Nm preserves linear equivalence, it follows that 2R belongs to a single linear series in C(2g−2−d).
Thus R is contained in a finite disjoint union of linear series, hence in only one of them since R is
connected.

4.3 Notation
The constant value of the function U0 → Pic(C) in Lemma 4.2 is denoted by M0, so that Mz = M0

for all z in U0 ⊂ U ⊂ T0(P ). Define N0 by setting N0 = L ⊗ π∗(M−1
0 ). Then for all z in U0,

|ker βz| = π∗(|Λz|) + Bz where Λz ⊂ H0(C,M0), dim(Λz) = c � 2, Bz � 0 has no invariant part
and Bz ∈ |N0|.
Lemma 4.4. If RST fails at L in Ξ, the pair (M0,N0) defined in § 4.3 is a maximal (∗) pair for L
as in Definitions 1.3 and 1.5, i.e. L ∼= π∗(M0)⊗N0, h

0(M0) � 2, |N0| contains a divisor having no
invariant part, and

(∗) 2h0(M0) + h0(N0) � h0(L) + 3.

Proof. By the discussion preceding Lemma 4.2, summarized in § 4.3, it suffices to prove the in-
equality (∗). By Lemma 2.3, for all z in U0 and all s �= 0 in ker(βz), the maximal isotropic sub-
space containing s is π∗(H0(M0)) · uz, where the divisor div(uz) = Bz. Thus all these maximal
isotropic subspaces have dimension h0(M0) � 2. Define the incidence variety B in |L| × T0(P ), by
B = {([s], z) : [s] ∈ |ker βz|, z ∈ U0} ⊂ |L| × T0(P ), so B is a projective space bundle over U0 with
fiber ∼= P

c−1, where c = dim(ker βz) � 2, hence c − 1 � 1. Thus B is irreducible. We compute the
dimension of B in two ways using the projections π1 : B → |L| and π2 : B → T0(P ). From π2, adding
the dimensions of the image and the fibers, dim(B) = dim(U0) + dim(P(ker βz)) = p+ c− 1, where
p = dim(T0(P )) = g(C) − 1.
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Riemann’s singularity theorem on a Prym theta divisor

Now consider π1 : B → |L|. If [s] is in the image of π1, the fiber π−1
1 ([s]) ∼= {z ∈ U0 : s ∈ ker(βz)}

= {z ∈ U0 : β(s,H0(L))(z) = 0} = U0 ∩ (β(s,H0(L)))⊥. To compute dim((β(s,H0(L)))⊥), note
that dim(β(s,H0(L))) = dim(H0(L))− dim({t : β(s, t) = 0}). By Lemma 2.3, part iii, the maximal
isotropic subspace containing s equals {t : β(s, t) = 0}, so by the discussion above it must equal
π∗(H0(M0)) · u for some u �= 0 in H0(N0). Thus dim(β(s,H0(L))) = h0(L) − h0(M0), hence
dim((β(s,H0(L)))⊥) = p−h0(L)+h0(M0). Since U0 ⊂ T0(P ) is open and dense, U0∩(β(s,H0(L)))⊥

(which is non-empty for s in π1(B)) also has dimension p − h0(L) + h0(M0). Thus dim(π−1
1 ([s]))

= p− h0(L) + h0(M0), a constant independent of s in π1(B).
Since π1(B) = image(π1 : B → |L|) is contained in P(π∗(H0(M0)) · H0(N0)), dim(π1(B)) �

dim(P(π∗(H0(M0)) · H0(N0))) � h0(M0) + h0(N0) − 2. From the above p + c − 1 = dim(B)
= dim(π1(B))+ dim(fibers of π1 over π1(B)) � h0(M0)+h0(N0)− 2+ p−h0(L)+h0(M0). Thus 3
� c+ 1 � 2h0(M0) + h0(N0) − h0(L), and (∗) holds.

5. Proof the Shokurov condition is necessary for RST to fail

By Lemma 4.4, any L in Ξ at which RST fails, admits a ‘maximal (∗) pair’ (M,N ). Next we show
that such a pair satisfies h0(N ) = 1, hence (M,N ) is also a maximal Shokurov pair.

5.1 Notation

If p is a point of C̃ denote its conjugate point by ι(p) = p′, and denote π(p) = π(p′) = p̄. If L is a
line bundle in Ξ and p, q two points in C̃, set L̂ = L(p′ − p+ q′ − q) and N̂ = N (p′ − p+ q′ − q).

Lemma 5.2. Assume L admits an exceptional pair (M,N ) with h0(N ) � 3, hence h0(L) � 4.
Then there exist p �= q on C̃ such that, in the notation of § 5.1, h0(L̂) = h0(L) − 2 � 2 and
h0(N̂ ) = h0(N ) − 2 � 1. Then L̂ is in Ξ and (M, N̂ ) is an exceptional pair for L̂. It suffices to
choose p to not be a base point of |L| or of |N |, and p̄ to not be a base point of |M|, and q �= p, p′,
so that q is not a base point of |L(−p)| nor of |N (−p)|, and q̄ is not a base point of |M|.
Proof. According to Mumford’s parity result [Mum71], for any point p of C̃, h0(L(p′ − p)) =
h0(L) ± 1. Assume p is not a base point of either |L| or |N | and p̄ = π(p) is not a base point
of |M|. Then h0(L(−p)) = h0(L)−1 = h0(L(p′−p)), since adding p′ cannot increase the dimension
by two. Then choose q �= p, p′, with q not a base point of either |L(−p)| or |N (−p)|, and q̄ not
in the base divisor of |M|. Then, since q �= p′, q is also not a base point of |L(−p + p′)|, so we
have h0(L(−p + p′ − q)) = h0(L(−p + p′)) − 1 = h0(L) − 2. Then Mumford’s principle applied to
h0(L(−p+ p′)) implies h0(L̂) = h0(L(−p+ p′ − q+ q′)) = h0(L)− 2 = h0(L(−p− q)). In particular,
we have h0(L) = h0(L(p′ + q′)), since h0(L(p′ + q′)) > h0(L) would imply that h0(L(p′ + q′− p− q))
> h0(L) − 2. Hence, |L(p′ + q′)| = |L| + p′ + q′.

Next we show h0(N̂ ) = h0(N ) − 2. Since Mumford’s principle does not apply directly to N , we
will bootstrap from the result for L.

Claim. h0(N (p′ + q′)) = h0(N (p′)) = h0(N (q′)) = h0(N ).

Proof. It suffices to show h0(N (p′ + q′)) = h0(N ). Suppose not, i.e. h0(N (p′ + q′)) > h0(N ) so that
p′ + q′ is not in the base divisor of |N (p′ + q′)|. Since p′ �= q′, either p′ or q′ is not in the base divisor.
If say p′ is not, then there is a divisor F in |N (p′ + q′)| such that F does not contain p′. Since p̄
is not in the base divisor of |M|, we may choose a divisor D in |M| with π∗(D) not containing p′.
Then the divisor π∗(D) +F belongs to |π∗(M)⊗N (p′ + q′)| = |L(p′ + q′)| = |L|+ p′ + q′, but does
not contain p′, a contradiction. If q′ is not a base point of |N (p′ + q′)|, argue the same way, using
the assumption that q̄ is not a base point of |M|.

9
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R. Smith and R. Varley

Now since q is not a base point of |N (−p)|, and q �= p′, q′, then q is also not a base point of
|N (−p+ p′ + q′)|. Hence, h0(N (−p+ p′ + q′ − q)) = h0(N (−p+ p′ + q′))− 1. Then p �= p′, q′, and p
is not a base point of |N | also implies that p is not a base point of |N (p′ + q′)|, so h0(N (−p+ p′ +
q′)) = h0(N (p′ + q′)) − 1. Hence, h0(N̂ ) = h0(N (−p + p′ − q + q′)) = h0(N (−p + p′ + q′)) − 1 =
h0(N (p′ + q′)) − 2 = h0(N ) − 2, by the claim above.

Corollary 5.3. If L in Ξ admits a maximal (∗) pair (M,N ) with h0(N ) � 3, then there exist
distinct points p, q such that L̂ = L(p′ − p + q′ − q) admits a maximal (∗) pair (M̃, Ñ ), with
h0(Ñ ) = h0(N ) − 2 � 1, and h0(L̂) = h0(L) − 2 � 2. In particular, L̂ is in Ξ.

Proof. Since by assumption |N | has projective dimension � 2 and contains a divisor with no
invariant part, the dense open subset of such divisors is infinite, hence some of them contain a
point p satisfying the conditions in the last sentence of Lemma 5.2. Fix such a point p. Then in
the hyperplane of divisors in |N | which contain p, there is an infinite open set of divisors with no
invariant part and also containing some point q satisfying the conditions of Lemma 5.2. Then the
triple (M, N̂ , L̂) satisfies the conclusions of Lemma 5.2, i.e. h0(N̂ ) = h0(N )− 2, h0(L̂) = h0(L)− 2.
By hypothesis (M,N ) is a maximal (∗) pair for L, so inequality (∗) holds: 2h0(M) + h0(N ) �
h0(L) + 3. Hence, (∗) also holds for the triple (M, N̂ , L̂), so (M, N̂ ) is a (∗) pair for L̂, but not
necessarily maximal. We examine that next.

By the choice of the points p and q, |N (−p− q)| contains a divisor with no invariant part. If B
is the base divisor of |N (−p − q)|, and B contains neither p nor q, then in the dense open set of
divisors of |N (−p − q)| with no invariant part, there is one, say D, containing neither p nor q.
Then D + p′ + q′ is a divisor in |N̂ | with no invariant part, hence (M, N̂ ) is maximal and we are
done. However, since h0(N (−p− q)) = h0(N )− 2 = h0(N (−p− q+ p′ + q′)), then B+ p′ + q′ is the
base divisor of |N (−p− q+ p′ + q′)| = |N̂ |, so if B contains p or q, then every divisor in |N̂ | has an
invariant part. Then we modify the pair (M, N̂ ) as follows.

If B contains p but not q, there is a D in |N (−p − q)| with no invariant part, and containing
p but not q. Then the invariant part of D + p′ + q′ is p + p′ which lies in the base divisor of |N̂ |.
We transfer this invariant part of the base locus down to M, replacing M by M̃ = M(p̄) (where
p̄ = π(p) = π(p′)), and replacing N̂ = N (p′ − p + q′ − q) by Ñ = N̂ (−p′ − p) = N (−2p − q + q′).
Then h0(M̃) � h0(M) and since p + p′ is in the base locus of |N̂ |, we have h0(Ñ ) = h0(N̂ ) =
h0(N ) − 2. Since by hypothesis (M,N ) is a maximal (∗) pair for L, then 2h0(M̃) � 2h0(M) �
h0(L) + 3 − h0(N ) = h0(L̂) + 3 − h0(Ñ ), hence (M̃, Ñ ) is a maximal (∗) pair for L̂, with h0(Ñ ) =
h0(N )−2, and h0(L̂) = h0(L)−2. Similarly, if B contains q but not p, replace N̂ by Ñ = N̂ (−q′−q),
and M by M̃ = M(q̄), and if B contains both p and q, replace N̂ by Ñ = N̂ (−q′− q− p′− p), and
M by M̃ = M(p̄+ q̄).

Lemma 5.4. If L admits a Shokurov pair, L admits a unique maximal Shokurov pair (M,N ), and
then necessarily h0(N ) = 1.

Proof. Existence follows from the remark at the end of § 1. For uniqueness, let L be a point of Ξ,
h0(L) = 2k � 2, and let (M,N ) and (M̃, Ñ ) be two maximal Shokurov pairs for L, with N ∼= O(B),
Ñ ∼= O(B̃), and B, B̃ effective divisors with no invariant part. Then in |L| ∼= P

2k−1, the subspaces
π∗|M| + B and π∗|M̃| + B̃ both have projective dimension � k, hence they meet. The isotropic
subspaces π∗(H0(M)) ·u and π∗(H0(M̃)) · ũ thus contain a common non-zero section, where u and
ũ are equations for B and B̃. By Lemma 2.3, part iii, their span is isotropic, but by Lemma 2.3,
part i, they are both maximal, hence they are equal. By the uniqueness statement of Lemma 2.2,
part ii, M ∼= M̃ and B = B̃, so N ∼= O(B) = O(B̃) ∼= Ñ . Thus in any maximal Shokurov pair
(M,N ), N ∼= O(B) for a unique B with no invariant part, hence h0(N ) = 1.

Lemma 5.5. If L in Ξ admits a maximal (∗) pair (M,N ), then h0(N ) = 1, hence (M,N ) is a
(unique) maximal Shokurov pair for L.
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Riemann’s singularity theorem on a Prym theta divisor

Proof. By hypothesis h0(N ) � 1. Let h0(L) = 2k � 2. If h0(N ) = 2, then (∗) 2h0(M) + h0(N ) �
h0(L)+3, implies 2h0(M) � h0(L)+1, and 2h0(M) > h0(L), hence (M,N ) is a maximal Shokurov
pair for L. By Lemma 5.4, then h0(N ) = 1, a contradiction. If h0(N ) = 3, (∗) implies 2h0(M) �
h0(L), hence 2h0(M)+2h0(N ) � h0(L)+6. By Lemma 3.1, the natural product map π∗|M|×|N | →
|L|, is not an injection. Since it restricts to an injection on each space of the form π∗|M| × {B}
and h0(M) � k = (1/2)h0(L), there are distinct divisors B1 �= B2 in |N | such that the two
spaces π∗|M| + B1 and π∗|M| + B2 are distinct subspaces of projective dimension � k − 1 which
meet in |L| ∼= P

2k−1. Then by Lemma 2.3, part iii, the corresponding distinct isotropic subspaces
π∗(H0(M)) · u1 and π∗(H0(M)) · u2 span a strictly larger isotropic subspace W of dimension
> h0(M). Since dim(W ) � k + 1, P(W ) has projective dimension � k in |L| and meets every
subspace of the form π∗|M|+B for B in |N |. Then no isotropic subspace of the form π∗(H0(M)) ·u
with u �= 0 in H0(N ) is maximal. That is, these spaces all meet non-trivially the isotropic subspace
W , so Lemma 2.3, part iii, yields an isotropic subspace V containing π∗(H0(M)) ·u, with dim(V ) �
dim(W ) > h0(M) = dim(π∗(H0(M)) · u). Since there exists B in |N | with no invariant part, the
isotropic subspace π∗(H0(M)) · u is maximal by Lemma 2.3, part ii, a contradiction.

Thus for all triples (M,N ,L) such that (M,N ) is a maximal (∗) pair for L, we know either
h0(N ) = 1, or h0(N ) � 4. If there exists such a triple (M,N ,L) with h0(N ) � 4, choose one
with h0(N ) > 1 and minimal. Then we find a triple (M̃, Ñ , L̂) as in Corollary 5.3, with (M̃, Ñ ) a
maximal (∗) pair for L̂, and h0(N ) > h0(Ñ ) = h0(N ) − 2 > 1, a contradiction.

Corollary 5.6. If Riemann’s singularity theorem fails at L in Ξ, then L admits a unique maximal
Shokurov pair (M,N ); for this pair h0(N ) = 1.

This is shown by Lemmas 4.4, 5.5 and 5.4.

Proof of Theorem 0.1. Since [Mum74, p. 342] an equation ϑ̃ for Θ̃ restricts on P ⊂ Pic2g−2(C̃) to
the square of an equation ξ for Ξ, if L is on Ξ, then by the classical RST on Θ̃, we would have
multL(Ξ) = (1/2)multL(Θ̃) = (1/2)h0(C̃,L) if and only if the leading term of a Taylor series for ϑ̃
restricts to the square of the leading term of ξ. Since [Mum74, p. 343] the restriction to TL(P ) of
this leading term for ϑ̃ equals det(β), this holds if and only if det(β) is not identically zero on TL(P ).
Thus, parts i and iv are equivalent in Theorem 0.1. By Lemma 2.4 (and its proof), part ii implies
part v, which implies part iv. Since part i implies part iii by Corollary 5.6, and part iii implies part ii
tautologically, we are done.

6. Further results and open questions

The question remains: what is the multiplicity of Ξ at a point L where RST fails? With refer-
ence to Lemma 2.4, if (M,N ) is an exceptional pair for L, then in fact multL(Ξ) � h0(C,M).
Since multL(Ξ) � (1/2)h0(C̃,L) for all L, thus multL(Ξ) � max{h0(C,M), (1/2)h0(C̃,L)} always
holds. It is natural to ask if multL(Ξ) = h0(C,M) when (M,N ) is a maximal Shokurov pair for L,
but we do not even know if multL(Ξ) � h0(C̃,L) in general. For example, we do not know whether a
singular point L on Ξ with h0(L) = 2 is a double point, but this appears to hold if L ∼= π∗(M)(B),
|M| is a base point free pencil and B � 0 has no invariant part. The best upper bound we know
for multiplicities of points on Ξ for dim(P ) � 3, is multL(Ξ) � g(C) − 2 = dim(P ) − 1, since
by [SV96] higher multiplicities imply that (P,Ξ) is a polarized product of elliptic curves, whereas
(P,Ξ) has at most two factors by [Mum74, Theorem, p. 344]. Another open problem is to under-
stand the structure of the tangent cones, e.g. the rank of the quadric tangent cone at a double
point.
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