Real Analysis Preliminary Examination May, 1993

- 1. Let $\{f_n\}$ be a sequence of differentiable functions on (0, 1), converging uniformly to a differentiable function f.
 - (a) Give an example to show that the derivatives f'_n need not converge uniformly to f'.
 - (b) Show that if f'_n converges uniformly to some function g, then f' = g.
- 2. State and prove a Mean Value Theorem for a function $f:D\subseteq\mathbb{R}^n\to\mathbb{R},\ n>1$. Be sure to include all necessary hypotheses for the domain D and the function f. (You may use without proof the mean value theorem for $g:\mathbb{R}\to\mathbb{R}$).
- 3. Prove that a continuous real-valued function on a compact metric space is uniformly continuous.
- 4. (a) Define the Lebesgue mesaure of a measurable set $A \subseteq \mathbb{R}$.
 - (b) Prove, using the definition, that the Lebesgue measure of [0, 1] equals 1.
- 5. Let $\phi(x)$ be a continuous function on \mathbb{R} , with $\int_{-\infty}^{\infty} \phi(x)dx = 1$ and $\phi(x) = 0$ $\forall |x| > 1. \text{ Prove that for any continuous function } f \text{ on } \mathbb{R}, \int_{-\infty}^{\infty} f(x)n\phi(nx)dx \to f(0)$ as $n \to \infty$.
- 6. A probability measure μ on $\mathbb R$ is a positive Borel measure μ with $\mu(\mathbb R)=1$. If μ, ν are probability measures on $\mathbb R$, then so is $\mu * \nu$, defined by $(\mu * \nu)(A)=\int \int \chi_A(s+t)d\mu(s)d\nu(t)$.
 - (a) Verify that $\mu * \nu$ is countably additive.
 - (b) Verify carefully that $\mu * \nu = \nu * \mu$.
- 7. Assume that all measures are positive and finite.
 - (a) Prove that if μ_1 and μ_2 are each singular with respect to ν , then so is $\mu_1 + \mu_2$.
 - (b) Suppose that μ is singular with respect to ν . Compute the Radon-Nikodym derivative of μ with respect to $\mu + \nu$.

- (c) Suppose that μ is absolutely continuous with respect to ν. In terms of the Radon-Nikodym derivative of μ with respect to ν, compute the Radon-Nikodym derivative of μ with respect to μ + ν.
- 8. Let X be a Banach space.
 - (a) Prove that the canonical mapping $X \to X^{**}$ is an isometry.
 - (b) Give an example of a Banach space X which is not reflexive, and verify your example by computing X*, X**.
- 9. Prove that the Banach space ℓ^1 is separable, and that the Banach space ℓ^{∞} is not separable.