April 1996.

Ph.D. Preliminary Exam: Real Analysis

(1) Let f(x) be a continuous function on $(-\infty, \infty)$. Show that

$$\lim_{h\to 0}\frac{1}{h}\int_0^1 (f(x+h)-f(x))dx = f(1)-f(0).$$

- (2) (a) Use the ratio test to show the series $\sum_{n=1}^{\infty} \frac{n}{2^n}$ converges.
 - (b) Use the power series $f(x) = \sum_{n=1}^{\infty} nx^{n-1}$ to compute $\sum_{n=1}^{\infty} \frac{n}{2^n}$.
- (3) Let $A = (a_{ij})$ be an $n \times n$ matrix. Then, for any column vector $x \in \mathbb{R}^n$, the product $Ax \in \mathbb{R}^n$. Define

$$||A|| = \sup_{x \neq 0} \frac{|Ax|}{|x|},$$

where
$$|x| = \sqrt{x_1^2 + \cdots + x_n^2}$$
.

- (a) Show that $||\cdot||$ defines a norm on $\mathbb{R}^{n\times n}$.
- (b) Show that if ||A|| < 1, then $A: \mathbb{R}^n \to \mathbb{R}^n$ is contractive mapping. Therefore the equation Ax = x has a unique solution.
- (4) Let f(x) be a monotone function on [0, 1]. Show that $\{x: f \text{ is discontinuous at } x\}$ is at most countable.
- (5) Let $\{f_n(x)\}$ be a sequence of Borel measurable functions. Show that $\limsup_{n\to\infty} f_n(x)$ is also Borel measurable.
- (6) Let f(x) be a Lebesgue integrable function on $[-\delta, 1+\delta]$ for some $\delta > 0$. Show that

$$\lim_{h \to 0} \int_0^1 |f(x+h) - f(x)| dx = 0.$$

- (7) Let $\{f_n(x)\}$ denote a sequence of nonnegative functions. Suppose that $\int f_n(x)dx \to 0$ as $n \to \infty$. Show that $f_n \to 0$ in measure.
- (8) Let $\{x_n\}$ and $\{a_n\}$ be two sequences. Suppose for all $\{x_n\} \in l^1$, $\sum_{n=1}^{\infty} a_n x_n$ converges. Prove that $\{a_n\} \in l^{\infty}$, i.e., $\sup_n |a_n| < \infty$.
- (9) If μ is a positive measure and E_1 , E_2 , ... are measurable sets satisfying

$$\sum_{n=1}^{\infty}\mu(E_n)<\infty,$$

prove that

$$\lim_{n\to\infty}\mu\left(E_1\bigcup\cdots\bigcup E_n\right)=\mu\left(\bigcup_{n=1}^\infty E_n\right).$$