By providing my signature below I acknowledge that I abide by the University's academic honesty policy. This is my work, and I did not get any help from anyone else during the exam:

Name (sign):
Student Number:
Instructor's Name: \qquad

Name (print): \qquad

- If you need extra space use the last page.
- Please show your work. An unjustified answer may receive little or no credit.
- If you make use of a theorem to justify a conclusion then state the theorem used by name.
- Your work must be neat. If I can't read it (or can't find it), I can't grade it.
- The total number of possible points that is assigned for each problem is shown here. The number of points for each subproblem is shown within the exam.
- Please turn off your mobile phone.
- A calculator is not necessary, but numerical answers should be given in a form that can be directly entered into a calculator.
- Common identities:

$$
\begin{aligned}
\cos (\alpha+\beta) & =\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta) \\
\sin (\alpha+\beta) & =\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta)
\end{aligned}
$$

1. [2 Bonus] Common Knowledge: Will Emma Norsgaard Bjerg be able to build on her success from 2023 in the 2024 cycling season?
2. Determine all of the values of x for each question below that satisfy the given equation. If no values of x satisfy the equation provide a brief justification as to how you arrived at your conclusion.
(a) $[6 \mathrm{pts}] \quad e^{5-3 x}=2$.
(b) $[6 \mathrm{pts}] \quad 2 \log _{4}(x)+1=4$.
(c) [6 pts] $\frac{\ln (x+1)}{\ln (1-x)}=2$.
(d) $[7 \mathrm{pts}] 2 \cdot 3^{1-2 x}=7 \cdot 6^{4+x}$.
3. The questions below refer to the function

$$
p(x)=\frac{1}{4}\left(\frac{1}{3}\right)^{x}-1
$$

(a) [6 pts] Make a rough sketch of the function using the aces below:

(b) $[6 \mathrm{pts}]$ Determine the asymptotes of $p(x)$.
(c) [6 pts] Determine any x-intercepts and y-intercepts of $p(x)$.
4. [10 pts] The function $A m$ is defined by

$$
A m(t)=A+B \log (x+10)
$$

The graph of the function goes through the points $(0,5)$ and $(10,7)$. Determine the values of A and B.
5. The function $h(x)$ is defined by

$$
h(x)=e^{2 x}+1
$$

(a) [6 pts] Show that the function is one-to-one.
(b) $[6 \mathrm{pts}]$ Determine the inverse of the function.
(c) [6 pts] Verify your answer in the previous question is the inverse using function composition.
6. [10 pts] A bank offers an account that has a 3.5% annual interest rate, compounded monthly. How long will it take for an initial balance to double in value?
7. The number of animals in a park follows a logistic model,

$$
P(t)=\frac{C}{1+20 e^{-r t}}
$$

The initial population is 1,000 animals, and three years later the population is estimated to be 1,200 animals.
(a) $[7 \mathrm{pts}]$ What are the values of C and r ?
(b) [7 pts] How long will it take for the population to reach 1,300 animals?
(c) [5 pts] What will the population be after a very long time?
\qquad

Extra space for work. Do not detach this page. If you want us to consider the work on this page you should print your name, instructor and class meeting time below.

Name (print): \qquad Instructor (print): \qquad Time: \qquad
\qquad

