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Figure 1. Figure for solution to problem 3

Topology Qualifying Exam Fall 2023 - Solutions

1. Let X be a compact space and let {An}∞n=1 be a sequence of nonempty closed
subsets of X such that An+1 ⊂ An for all n. Prove that ∩∞

n=1An is nonempty.
Solution: Let Un = X \An. Then each Un is an open set since An is closed, and

Un ⊂ Un+1 since An+1 ⊂ An. Suppose for contradiction that ∩∞
n=1An was empty.

This would yield

∅ = ∩∞
n=1(X \ Un) = X \ ∪∞

n=1Un,

and hence ∪∞
n=1Un = X. Since X is compact and the Un are open, it would follow

that finitely many Un suffice to cover X, say X = ∪N
n=1Un. But since Un ⊂ Un+1

we have ∪N
n=1Un = UN , so our contradiction assumption would imply that X = UN

for some N , and hence that AN = X \ UN is empty, contrary to the hypothesis
that all of the An are nonempty.

2. Give an example of a continuous surjective function that is not an open map.
Solution: Let X = [0, 1] ∪ [2, 3] and Y = [0, 1], both with the subspace topology

from the standard topology on R. Define f by f(x) = x when x ∈ [0, 1] and
f(x) = 1/2 when x ∈ [2, 3]. This is clearly surjective, and is continuous by the
pasting lemma. But [2, 3] is open in Y while f([2, 3]) = {1/2} which is not open in
[0, 1].

3. Let G be the free group on two generators a and b. Use covering space
theory to find (giving an explicit description of the generators in terms of a and b)
a normal, index-three subgroup of G.

Solution: Consider the covering space X ′ of S1 ∨ S1 depicted in Figure 1, with
the covering map π : X ′ → S1∨S1 sending edges marked a to one of the circles and
edges marked b to the other circle with orientations as indicated, and with the points
at which ‘a’ and ‘b’ edges intersect (including the basepoint p′ of X ′) mapping to
the point of intersection p of the two circles. This is a three-sheeted covering space,
which is normal because successive rotations of the figure by 2π

3 map any point in
the preimage of p to any other such point. Hence covering space theory implies
that π∗ (π1(X

′, p′)) will be an index-three, normal subgroup of π1(S
1 ∨ S1, p), the

latter of which is the free group on two generators, one for each of the two circles.

The space X ′ deformation retracts to a wedge of four circles (by contracting a
maximal tree, which will consist of two edges, to a point), so its fundamental group
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is free on four generators; to see where these generators are mapped under π∗ we
concatenate edge labels for appropriate loops based at p′ in the diagram (with
inverses when we go against the orientation of a path). There are various possible
choices of sets of generators; one such is {ab−1, b3, bab, a−1b}, as the associated
loops in the diagram map to the four distinct circles in S1 ∨ S1 ∨ S1 ∨ S1 under
the quotient that collapses the two edges of the triangle with vertex p′. Thus the
desired index three normal subgroup of the free group on two generators is the one
generated by ab−1, b3, bab, and a−1b.

4. Let D denote the closed unit disk in R2 with boundary S1. Choose p ∈ S1

and let X denote the union (S1 × S1) ∪ (D × {p}). Find the fundamental group
and the homology of X.

Solution: X can be formed as a cell complex, consisting of the usual cell complex
structure for the torus S1 × S1 (with one zero cell p, two one-cells a and b, and a
single two-cell e glued via the word aba−1b−1) together with an additional two-cell
f glued via a. The fundamental group therefore has presentation ⟨a, b|aba−1b−1, a⟩
which simplifies to ⟨b⟩, i.e. the fundamental group is isomorphic to Z.

For the homology we calculate the cellular chain complex (C∗, ∂). (Write ∂k for
the restriction of ∂ to Ck.) C0 is generated by p, with ∂0p = 0. C1 is generated
by a and b, with ∂1a = ∂1b = p − p = 0. C2 is generated by e and f , with
∂2e = a+ b− a− b = 0 and ∂2f = a. All other Ck are 0. Hence

H0(X) =
ker ∂0
Img∂1

= ⟨p⟩ ∼= Z, H1(X) =
ker ∂1
Img∂2

=
⟨a, b⟩
⟨a⟩

∼= Z, H2(X) =
ker ∂2
Img∂3

= ⟨e⟩ ∼= Z,

and all other Hk(X) are 0.
5. Find, with proof, a choice of identifications in pairs between the edges of a

regular octagon such that the quotient space is homeomorphic to the Klein bottle.
Solution: There are multiple correct solutions to this problem. Any choice of
identifications in pairs of the sides of an octagon yields a cell complex with four
1-cells and one 2-cell, while the number (say c0) of 0-cells will depend on how the
edges are identified. The Euler characteristic will thus be c0 − 4 + 1 = c0 − 3,
so since the Euler characteristic of the Klein bottle is zero we will need to have
c0 = 3. Up to homeomorphism, there are precisely two compact connected surfaces
without boundary having Euler characteristic zero, namely the Klein bottle K and
the torus T . One way of distinguishing these is by the fact that H2(K) = 0 while
H2(T ) = Z; in terms of the cellular chain complex this translates to the statement
that the boundary of the 2-cell will be nonzero for K and zero for T . So an edge
identification will work as long is it results in exactly three equivalence classes
of vertices, and the word in the one-cells formed by circulating counterclockwise
around the octagon does not have all generators appear in canceling pairs.

One way of achieving this is shown in Figure 2. Another valid way of arriving
at that particular figure is by noting that K ∼= RP 2#RP 2 and then gluing two
presentations of RP 2 as the quotient of a square by the restriction to its boundary
of a 180◦ rotation.

6. Prove that R3 is not homeomorphic to R4.
Solution: Suppose that f : R3 → R4 is a homeomporphism. Let p = (0, 0, 0) ∈

R3 and let q = f(p) ∈ R4. Then f restricts to a homeomporphism from R3 \ {p} to
R4 \ {q}. But R3 \ {p} deformation retracts on S2 and R4 \ {q} is homeomorphic
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Figure 2. Figure for solution to problem 3

to R4 \ {(0, 0, 0, 0)} which defommation retracts onto S3. Hk(S
2) is 0 except when

k = 0 and k = 2 while Hk(S
3) is 0 except when k = 0 and k = 3, so S2 and S3

cannot be homotopy equivalent, which leads to a contradiction.
7. Recall that if X is a space, the suspension of X is the space SX formed as the

quotient of [−1, 1]×X by the relation that collapses both {−1} ×X and {1} ×X

to points. Prove that for all k there are isomorphisms H̃k+1(SX) ∼= H̃k(X), where

H̃k denotes kth reduced homology.
Solution: Regard SX as a quotient of the cone CX, which is itself formed from

[−1, 1] × X by collapsing {−1} × X to a point. Note that CX is contractible

and thus H̃k(CX) = 0 for all k. Then SX is formed from CX by collapsing
A = {1} ×X to a point. Also note that (CX,A) is a good pair, since the product
structure gives an obvious neighborhood of A that deformation retracts onto A.
Thus Hk(CX,A) ∼= Hk(CX/A,A/A) ∼= H̃k(CX/A = SX). Now, since Hk(CX) is
contractible, the long exact sequence for the pair (CX,A) becomes a sequence of

isomorphisms Hk(CX,A) ∼= H̃k−1(A) for all k. Since A ∼= X we get the desired
isomorphisms.

8. Let X be the standard 3–simplex and let A be the 1–skeleton of X. Compute
the relative homology Hk(X,A) for all k.

Solution: We will use the long exact sequence for the pair (X,A) and note
that Hk(X) = 0 except when k = 0, H0(X) = Z (because X is contractible),
Hk(A) = 0 except when k = 0 and 1, H0(A) = Z and H1(A) = Z3 (because
A is a graph homotopy equivalent to a wedge of 3 circles). Thus for k > 2, we
have 0 = Hk(X) → Hk(X,A) → Hk−1(A) = 0 and thus Hk(X,A) = 0. For
k = 2 we have 0 = H2(X) → H2(X,A) → H1(A) = Z3 → H1(X) = 0 and thus
H2(X,A) = Z3. For k = 1 we have 0 = H1(X) → H1(X,A) → H0(A) = Z →
H0(X) = Z but we know that this last inclusion-induced map is an isomorphism
and thus H1(X,A) = 0. Lastly H0(X,A) = 0 because of this same isomorphism
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(or because H0(X,A) is always 0 when each path component of X contains a path
component of A).


