
Complex Analysis Qualifying Examination

Fall 2023

All problems are of equal weight. Do the easier ones first. Please arrange your solutions
in numerical order even if you do not solve them in that order. Show work and carefully
justify/prove your assertions.

Notation: D,H denote respectively the open unit disc centered at origin and the open
upper half plane.

1. Cayley transform F (z) = i−z
i+z

is a conformal map from H to D.

(a) Show that F : H → D, one-to-one and onto, and maps the real line to the unit
circle.

(b) Find the images of the real line z = x + ib for a fixed b > 0 and −∞ < x < ∞
and the ray z = a + iy for a fixed a ∈ R and y > 0. You are required to write
down the exact equations of these images.

Solution: (a) simple and routine
(b) Compute F (x+ ib) and F (a+ iy) for b > 0 and a ∈ R fixed:

F (x+ ib) =
i− x− ib
i+ x+ ib

=
−x+ i(1− b)
x+ i(1 + b)

=
[−x+ i(1− b)][x− i(1 + b)]

[x+ i(1 + b)][x− i(1 + b)]

=
(−ib− x+ i)(−ib+ x− i)

x2 + (1 + b)2
=
−b2 − (x− i)2

x2 + (1 + b)2

=
1− b2 − x2

x2 + (1 + b)2
+

2x

x2 + (1 + b)2
i := u(x) + iv(x)

Then we note that

u+ 1 =
2 + 2b

x2 + (1 + b)2
and (u+ 1)2 + v2 =

4

x2 + (1 + b)2
.

This yields
1

x2 + (1 + b)2
=

1

4
[(u+ 1)2 + v2]

and

u+ 1 =
2 + 2b

x2 + (1 + b)2
=

1 + b

2
[(u+ 1)2 + v2].

Completing the square in the above to get

(u+ 1− 1

1 + b
)2 + v2 =

1

(1 + b)2
.

This is the circle centered at (− b
1+b

, 0) and the radius 1
1+b

.



F (a+ iy) =
i− a− iy
i+ a+ iy

=
−a+ i(1− y)

a+ i(1 + y)
=

[−a+ i(1− y)][a− i(1 + y)]

[a+ i(1 + y)][a− i(1 + y)]

=
(−iy − a+ i)(−iy + a− i)

a2 + (1 + y)2
=
−y2 − (a− i)2

a2 + (1 + y)2

=
1− y2 − a2

a2 + (1 + y)2
+

2a

a2 + (1 + y)2
i := u(y) + iv(y)

Then we note that

u+ 1 =
2 + 2y

a2 + (1 + y)2
and (u+ 1)2 + v2 =

4

a2 + (1 + y)2
.

This yields
1

a2 + (1 + y)2
=

1

4
[(u+ 1)2 + v2]

and

v =
2a

a2 + (1 + y)2
=
a

2
[(u+ 1)2 + v2].

Completing the square in the above to get

(u+ 1)2 + (v − 1

a
)2 =

1

a2
.

This is the part of circle centered at (−1, 1
a
) and the radius 1

|a| inside the unit disc.
When a = 0, the circle reduces to v = 0 and the image is the u-axis inside the unit
disc. �

2. This question is about Jordan Lemma and its application.

(a) If ΓR is the semicircle z(θ) = Reiθ with 0 ≤ θ ≤ π. P (z) and Q(z) are polynomials
with Degree(P ) ≤ Degree(Q)− 1. Show that

lim
R→∞

∫
ΓR

P (z)

Q(z)
eizdz = 0.

(b) Let a, λ > 0. Compute the integral

1

π

∫ ∞
−∞

x sin(λx)

x2 + a2
dx

Solution: (a) The proof of Jordan lemma is to test basic skill in estimation. We
assume deg(P ) = m and deg(Q) = n. There exists some constant K so that∣∣∣∣∫

ΓR

P (z)

Q(z)
eizdz

∣∣∣∣ =

∣∣∣∣∫ π

0

P (Reiθ)

Q(Reiθ)
eiR(cos θ+i sin θ)iReiθdθ

∣∣∣∣
≤ KRm−n+1

∫ π

0

e−R sin θdθ

= KRm−n+1

∫ π/2

0

e−R sin θdθ +KRm−n+1

∫ π

π/2

e−R sin θdθ



For the second integral, we let θ = π − φ and it is reduced to∫ π

π/2

e−R sin θdθ =

∫ π/2

0

e−R sinφdφ

Hence we have ∣∣∣∣∫
ΓR

P (z)

Q(z)
eizdz

∣∣∣∣ ≤ 2KRm−n+1

∫ π/2

0

e−R sin θdθ.

Next we note that sin θ ≤ 2
π
θ for 0 ≤ θ ≤ π/2, we have∫ π/2

0

e−R sin θdθ ≤
∫ π/2

0

e−2Rθ/πdθ =
π

2R
(1− e−R)

Therefore we have ∣∣∣∣∫
ΓR

P (z)

Q(z)
eizdz

∣∣∣∣ ≤ πKRn−m(1− e−R)

Since n−m ≤ 0, we have the limit goes to 0 as R→∞
For (b), we just apply the Jordan lemma and the Cauchy integral formula get

1

2πi

∫ ∞
−∞

xeiλx

x2 + a2
dx+

1

2πi

∫
ΓR

zeiλz

z2 + a2
dz = Res

(
zeiλz

z2 + a2

) ∣∣∣
z=ia

=
iaeiλia

2ia
=

1

2
e−aλ

Hence we have
1

π

∫ ∞
−∞

x sin(λx)

x2 + a2
dx = e−aλ

�

3. Let f be non-constant and holomorphic in an open set containing the closed unit disc
D̄ = {z |z| ≤ 1}.

(a) Show that if |f(z)| = 1 when |z| = 1, then the image of f contains the unit disc.

(b) Show that if |f(z)| ≥ 1 when |z| = 1 and there exists a point z0 ∈ D such that
|f(z0)| < 1, then the image of f contains the unit disc.

Solution: (a) By Rouché theorem, f(z) and f(z)−w0 have the same number of zeros
inside the unit circle provided |w0| < 1. Hence if f has one zero, its image include the
unit disc. If f is nonzero, then 1

f
is holomorphic so 1

|f(z)| ≤ 1 for z ∈ D̄ by the maximum

modulus principle. But then |f(z)| ≥ 1 for all z ∈ D̄.which contradicts to the open
mapping theorem: Pick any x with |z| = 1 then f(D̄) contains a neighborhood of f(z)
which include points w with |w| < 1 since |f(z)| = 1.

(b) Let w0 = f(z0) where |z0| < 1 and |w0| < 1. By Rouché theorem again, f(z) and
f(z)−w have the same number of zeros for all w with j|w| < 1. Since there exists a w
(namely w0) for which f(z) − w has a zero, it has a zero for all w ∈ D̄. So the image
of f contains D̄. �



4. Let f : D→ D be holomorphic with f(0) = 0. Show that

(a) |f(z)| ≤ |z| for all z ∈ D.

(b) If for some z0 6= 0, |f(z0)| = |z0|, then f is a rotation.

(c) |f ′(0)| ≤ 1, if equality holds, then f is a rotation.

(d) Let D(0, R) = {z : |z| < R}. Show that if F : D(0, R)→ C is holomorphic, with
|F (z)| ≤M for some M , then∣∣∣∣∣ F (z)− F (0)

M2 − F (0)F (z)

∣∣∣∣∣ ≤ |z|
MR

.

Hint: (a)-(c) is Schwarz lemma and you are required to prove it.

Solution: The proof of Schwarz lemma is standard, we refer to Stein’s book. For part
(d), we will construct a map from D to D from F so the condition of Schwarz lemma
is satisfied. Since

f0(z) = Rz : D→ D(0, R), F : D(0, R)→ D(0,M), f1(z) =
F (z)

M
: D(0, R)→ D

and we can composite these maps with with ψα(z) = α−z
1−ᾱz to get

f(z) = ψα

(
F (Rz)

M

)
: D→ D

We choose α = F (0)/M so that f(0) = ψα(F (0)/M) = 0. Apply the Schwarz lemma
we have ∣∣∣∣∣ F (0)

M
− F (Rz)

M

1− F (0)
M

F (Rz)
M

∣∣∣∣∣ ≤ |z| ⇐⇒

∣∣∣∣∣ F (0)− F (Rz)

M2 − F (0)F (Rz)

∣∣∣∣∣ ≤ |z|M
for |z| ≤ 1. Then we replace z by z

R
and obtain∣∣∣∣∣ F (0)− F (z)

M2 − F (0)F (z)

∣∣∣∣∣ ≤ |z|
MR

for |z| < R

�

5. Let G = D \ [1
2
, 1). Find a bijective conformal map from G to the upper half plane.

Solution: The linear fraction map

z1 = f(z) = i
1− z
1 + z

takes 0→ i, 1→ 0, −1→∞.

Hence the linear fractional map maps the region to the region D1 = H − (0, i
3
] Then

z2 = z2
1 will map D1 to D2 = C \ [−1

9
,∞), then the translation z3 = z2 + 1

9
maps D2

to D3 = C \ [0,∞). Then

w =
√
z3 =

√
z2

1 +
1

9



will transfer D1 to the upper half plane. Hence the conformal map is

w =

√
−
(

1− z
1 + z

)2

+
1

9
=

2i

3(1 + z)

√
(2z − 1)(z − 2).

�

6. Suppose that F (z) is holomorphic on a neighborhood U of z0 with F (z0) = F ′(z0) = 0
and F ′′(z0) = 6= 0. Prove that there are two curves Γ1 and Γ2 passing through z0, are
orthogonal at z0, F |Γ1 is real and has a minimum at z0 and F |Γ2 is also real and has a
maximum at z0. Here F |Γ mean the restriction of F to Γ.

Solution: Let F (z) =
∞∑
n=0

an(z − z0)n. Then we have a0 = a1 = 0,F ′′(z0) = 2a2 6= 0

and we can write

F (z) = (z − z0)2 [a2 + a3(z − z0) + · · · ] = [f(z)]2.

i.e. f(z) is the square-root of F (z). Since a2 6= 0, f(z) is well defined near z0 and
f(z) = (z − z0)h(z) with h(z0) 6= 0 and f ′(z0) = h(z0) by the product rule. Then
w = f(z) = u(z) + iv(z) is locally one to one is a disc Dr(z0) = {z, |z − z0| < r} and
we let g(w) = σ(w) + iτ(w) be the inverse to f on Ω = f(Dr(z0)). so we have

g(f(z)) = z for all z ∈ Dr(z0) and f(g(w) = w for all w ∈ f(Dr(z0).

Let Γ1 consists of those points in Dr(z0) with u(z) = u(z0)− 0,i.e.,

Γ1 := {z ∈ Dr(z0) : u(z) = 0} = {z ∈ Dr(z0) : Re(f(z)) = 0} = {g(w) : Re(w) = 0, w ∈ Ω}

So Γ1 is the range of function g(w) on the set {w ∈ Ω : Re(w) = 0} and hence a smooth
arc in Dr(z0). Likewise Γ2 consists of those points in Dr(z0) with v(z) = v(z0)− 0,i.e.,

Γ2 := {z ∈ Dr(z0) : v(z) = 0} = {z ∈ Dr(z0) : Im(f(z)) = 0} = {g(w) : Im(w) = 0, w ∈ Ω}.

We wish to show that Γ1 and Γ2 meet a right angle at z0. since g(w) is conformal
and lines Re(w) = u(z) and Im(w) = v(z) = 0 meets a right angle at 0. This implies
Γ1 and Γ2 meet at right angle at z0. Direct computation yields the same result: Let
w = s+ it and g(w) = σ(s, t) + iτ(s.t). Then

∇σ · ∇τ =
∂σ

∂s

∂τ

∂s
+
∂σ

∂t

∂τ

∂t

But g is holomorphic and it satisfies the Cauchy-Riemann equations

∂σ

∂s
=
∂τ

∂t
and

∂σ

∂t
= −∂τ

∂s

hence ∇σ · ∇τ = 0. Finally

F (z)|Γ1 = (f(z))2|Γ1 = (iv(z))2 = −v2(z), F (z)|Γ2 = (f(z))2|Γ2 = (u(z))2

and F |Γ1 has a local maximum at z0 and F |Γ2 has a local minimum at z0. �


