COMPLEX ANALYSIS EXAM – FALL 2025

All problems are of equal weight. Please arrange your solutions in numerical order even if you do not solve them in that order. Show work and carefully justify/prove your assertions.

Problem 1. (20 points) For a > 0, compute:

$$\int_0^\infty \frac{x \sin x}{x^2 + a^2} \, dx$$

using contour integration.

Problem 2. (20 points) Let R, M be positive constants and let $\mathbb{D}_R, \mathbb{D}_M$ denote the open discs of radii R and M, respectively. Let $f: \mathbb{D}_R \to \mathbb{D}_M$ be holomorphic with f(0) = 0.

- (a) Prove that $|f(z)| \leq \frac{M|z|}{R}$ for all $z \in \mathbb{D}_R$. (b) Suppose that $|f'(0)| = \frac{M}{R}$. Show that f(z) is a composition of dilation and rotation.
- (c) Suppose f has two distinct fixed points in \mathbb{D}_R . Prove that $f(z) = \frac{Mz}{R}$.

Problem 3. (20 points)

(a) Let α be a complex number of modulus $|\alpha| > e = \exp(1)$. How many solutions the equation

$$\alpha z \exp(z) = 1$$

has in \mathbb{D} (the open unit disc)?

(b) Let f be meromorphic in \mathbb{D} with no zeros/poles on $\partial \mathbb{D}$. If |f(z)| = 1 on $\partial \mathbb{D}$, show that the number of zeros equals the number of poles inside \mathbb{D} .

Problem 4. (20 points) Let $G = \mathbb{C} \setminus \{(-\infty, -1] \cup [1, \infty)\}$. Find a conformal map from G to the upper half-plane \mathbb{H} .

Problem 5. (20 points) Let F(z) be holomorphic near z_0 with $F(z_0) = F'(z_0) = 0$ and $F''(z_0) \neq 0$.

1

- (a) Show that there exist two curves Γ_1, Γ_2 intersecting orthogonally at z_0 where F is real-valued.
- (b) Prove that F has a saddle point at z_0 .

- Problem 6. (20 points) Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ have radius of convergence r, with a simple pole at z_0 where $|z_0| = r$.

 (a) Prove that $a_n \neq 0$ for all sufficiently large n.

 (b) Show that $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} = z_0$.
- Problem 7. (20 points) Let $\{f_k(z)\}, k=1,2,3,\ldots$, be a sequence of functions holomorphic in $\mathbb D$ (the open unit disc). Suppose that

$$F(z) = \sum_{k=1}^{\infty} f_k(z)$$

is uniformly convergent in \mathbb{D} . Prove that F(z) is holomorphic in \mathbb{D} .

Good Luck!