ALGEBRA QUALIFYING EXAM, FALL 2015

Instructions: Complete all 8 problems. In multi-part problems, you may assume the result of any part (even if you have not been able to do it) in working on subsequent parts.

- (1) Let G be a group containing a subgroup H not equal to G of finite index. Prove that G has a normal subgroup which is contained in every conjugate of H, and which is of finite index.
- (2) Let G be a finite group, H a p-subgroup and P a Sylow p-subgroup (p a prime). Let H act on the left cosets of P in G by left translation. Prove that there is an orbit under this action of length 1. Prove that xP is an orbit of length 1 if and only if H is contained in xPx^{-1} .
- (3) Let R be a rng (ring without 1) which contains an element u such that for all $y \in R$, there is an $x \in R$ such that xu = y. Prove that R contains a maximal left ideal. Hint: imitate the proof (using Zorn's lemma) in the case when R does have 1.
- (4) Let R be a PID (Principal Ideal Domain). Let $(a_1) < (a_2) < \cdots$ be an ascending chain of ideals in R. Prove that for some n, we have $(a_j) = (a_n)$ for all $j \ge n$.
- (5) Let $u = \sqrt{2 + \sqrt{2}}, v = \sqrt{2 \sqrt{2}}, \text{ and } E = \mathbb{Q}(u).$
 - (a) Find (with justification) the minimal polynomial f(x) of u over \mathbb{Q} .
 - (b) Show $v \in E$. Show that E is a splitting field of f(x) over \mathbb{Q} .
 - (c) Determine the Galois group of E over \mathbb{Q} , and determine all the intermediate fields F with $E \supset F \supset \mathbb{Q}$.
- (6) (a) Let G be a finite group. Show that there exists a field extension K/F with $\operatorname{Gal}(K/F) = G$. (You may assume that for any natural number n there is a field extension with Galois group S_n .)
 - (b) Let K be a Galois extension of F with |Gal(K/F)| = 12. Prove that there exists an intermediate field E of K/F with [E:F] = 3.
 - (c) With K/F as in (b), does an intermediate field L necessarily exist satisfying [L:F] = 2? Give a proof or counterexample.
- (7) (a) Show that two 3×3 matrices over the complex numbers are similar if and only if their characteristic polynomials are equal and their minimal polynomials are equal.
 - (b) Does the conclusion of the previous part hold for 4×4 matrices? Justify your answer with a proof or counterexample.

(8) Let V be a vector space over a field F and V^* its dual. A symmetric bilinear form (\cdot, \cdot) on V is a map $V \times V \to F$ satisfying the rules

 $(av_1 + bv_2, w) = a(v_1, w) + b(v_2, w)$ and (v, w) = (w, v)

for $a, b \in F$ and $v_1, v_2, v, w \in V$. The form is nondegenerate if the only element w satisfying (v, w) = 0 for all $v \in V$ is w = 0.

Suppose (\cdot, \cdot) is a symmetric nondegenerate bilinear form on V. If W is a subspace of V, define

$$W^{\perp} = \{ v \in V \mid (v, w) = 0 \text{ for all } w \in W \}.$$

(a) Show that if X and Y are subspaces of V with $Y \subset X$, then $X^{\perp} \subseteq Y^{\perp}$. (b) Define an injective linear map $\psi: Y^{\perp}/X^{\perp} \hookrightarrow (X/Y)^*$ which is an isomorphism if V is finite-dimensional.