ALGEBRA QUALIFYING EXAM, FALL 2025

Instructions: Complete all 7 problems. Each problem is worth 10 points. Provide ample justification to your answers. In multi-part problems, you may assume the result of any part (even if you have not been able to do it) in working on subsequent parts.

- (1) Let G, H be finite cyclic groups. Prove that $G \times H$ is cyclic if and only if (|G|, |H|) = 1.
- (2) (a) Using Sylow theory show that every group of order 10 is not simple.
 - (b) Classify all groups of order 10 and justify your answer. For the non-abelian group(s), give a presentation by generators and relations.
- (3) Let A be an $n \times n$ matrix over a field k.
 - (a) Define precisely what if means for A to be diagonalizable.
 - (b) Provide the definition of an eigenvalue for A, the definition of an eigenspace, and a criterion via eigenspaces for A to be diagonalizable.
 - (c) Prove that if A and B are two $n \times n$ matrices that are diagonalizable with the property that AB = BA then they are simultaneously diagonalizable.
- (4) Let $u \in \mathbb{C}$ be a root of the polynomial $m(x) = x^3 6x^2 + 9x + 3 \in \mathbb{Q}[x]$, and consider the field extension $\mathbb{Q}(u) \subseteq \mathbb{C}$ of \mathbb{Q} .
 - (a) Show that m(x) is irreducible in $\mathbb{Q}[x]$.
 - (b) Define a ring homomorphism $f: \mathbb{Q}[x] \to \mathbb{C}$ with image $\mathbb{Q}(u)$. Conclude that there is an isomorphism between $\mathbb{Q}(u)$ and a quotient of $\mathbb{Q}[x]$, and specify that quotient ring explicitly.
 - (c) What is the degree $[\mathbb{Q}(u):\mathbb{Q}]$? Give a \mathbb{Q} -basis of $\mathbb{Q}(u)$.
 - (d) Express the elements u^4 and u^{-1} in $\mathbb{Q}(u)$ in terms of the basis you gave in part (c).
- (5) Let $F = \mathbb{Q}(\sqrt[3]{5})$
 - (a) Find the smallest field K such that $F \subseteq K$ such that K is a Galois extension over \mathbb{Q} .
 - (b) Prove that K is Galois over F.
 - (c) Compute that Galois group $Gal(K/\mathbb{Q})$ and Gal(K/F).
- (6) Let R be a ring with unity.
 - (a) Define what it means for an R-module to be torsion free.
 - (b) Prove that if F is a free module, then any short exact sequence of R-modules $0 \to N \to M \to F \to 0$ splits.
 - (c) Let R be a PID. Show that any finitely generated R-module M can be expressed as a direct sum of a torsion module and a free module. [You may assume that a finitely generated torsion free module over a PID is free.]

(7) Consider the matrix in $M_3(\mathbb{C})$

$$A = \begin{bmatrix} 0 & -1 & 2 \\ 3 & 8 & -14 \\ 3 & 6 & -10 \end{bmatrix}$$

- (a) Find the Jordan canonical form J of A.
- (b) Find an invertible matrix P such that $P^{-1}AP=J$. (You should not need to compute P^{-1} .)