ALGEBRA QUALIFYING EXAM, FALL 2019

Instructions: Complete all 8 problems. In multi-part problems, you may assume the result of any part (even if you have not been able to do it) in working on subsequent parts.
(1) Let G be a finite group with n distinct conjugacy classes . Let $g_{1} \cdots g_{n}$ be representatives of the conjugacy classes of G. Prove that if $g_{i} g_{j}=g_{j} g_{i}$ for all i, j then G is abelian.
(2) Let G be a group of order 105 and let P, Q, R be Sylow $3,5,7$ subgroups respectively.
(a) Prove that at least one of Q and R is normal in G.
(b) Prove that G has a cyclic subgroup of order 35.
(c) Prove that both Q and R are normal in G.
(d) Prove that if P is normal in G then G is cyclic.
(3) Let R be a ring with the property that for every $a \in R, a^{2}=a$
(a) Prove that R has characteristic 2 .
(b) Prove that R is commutative.
(4) Let F be a finite field with q elements. Let n be a positive integer relatively prime to q and let ω be a primitive nth root of unity in an extension field of F. Let $E=F[\omega]$ and let $k=[E: F]$.
(a) Prove that n divides $q^{k}-1$.
(b) Let m be the order of q in $\mathbb{Z} / n \mathbb{Z}$. Prove that m divides k.
(c) Prove that $m=k$.
(5) Let R be a ring and M an R-module. Recall that the set of torsion elements in M is defined by $\operatorname{Tor}(m)=\{m \in M \mid \exists r \in R, r \neq 0, r m=0\}$.
(a) Prove that if R is an integral domain, then $\operatorname{Tor}(M)$ is a submodule of M.
(b) Give an example where $\operatorname{Tor}(M)$ is not a submodule of M.
(c) If R has 0-divisors, prove that every non-zero R-module has non-zero torsion elements.
(6) Let R be a commutative ring with multiplicative identity. Assume Zorn's Lemma.
(a) Show that

$$
N=\left\{r \in R \mid r^{n}=0 \text { for some } n>0\right\}
$$ is an ideal which is contained in any prime ideal.

(b) Let r be an element of R not in N. Let S be the collection of all proper ideals of R not containing any positive power of r. Use Zorn's Lemma to prove that there is a prime ideal in S.
(c) Suppose that R has exactly one prime ideal P. Prove that every element r of R is either nilpotent or a unit.
(7) Let ζ_{n} denote a primitive nth root of $1 \in \mathbb{Q}$. You may assume the roots of the minimal polynomial $p_{n}(x)$ of ζ_{n} are exactly the primitive nth roots of 1 . Show that the field extension $\mathbb{Q}\left(\zeta_{n}\right)$ over \mathbb{Q} is Galois and prove its Galois group is $(\mathbb{Z} / n \mathbb{Z})^{*}$. How many subfields are there of $\mathbb{Q}\left(\zeta_{20}\right)$?
(8) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of a real vector space V and let $\Lambda:=\left\{\sum r_{i} e_{i} \mid r_{i} \in \mathbb{Z}\right\}$. Let • be a non-degenerate $(v \cdot w=0$ for all $w \in V \Longrightarrow v=0)$ symmetric bilinear form on V such that the Gram matrix $M=\left(e_{i} \cdot e_{j}\right)$ has integer entries. Define the dual of Λ to be

$$
\Lambda^{\vee}:=\{v \in V \mid v \cdot x \in \mathbb{Z} \text { for all } x \in \Lambda\}
$$

(a) Show that $\Lambda \subset \Lambda^{\vee}$.
(b) Prove that $\operatorname{det} M \neq 0$ and that the rows of M^{-1} span Λ^{\vee}.
(c) Prove that $\operatorname{det} M=\left|\Lambda^{\vee} / \Lambda\right|$.

