Complex Analysis Qualifying Examination — Fall 2006

Show work and carefully justify/prove your assertions.

- 1. Evaluate $\int_0^\infty \frac{x^2}{1+x^4} dx$ using the method of complex contour integration. Justify all steps.
- 2. Find a conformal map from the intersection of |z-1| < 2 and |z+1| < 2 to the upper half plane. (Note that the intersection of the circles |z-1| = 2 and |z+1| = 2 are at $z = \pm i\sqrt{3}$.)
- 3. Explicitly describe all entire functions f such that $|f(z)| \ge |z|$ for all $z \in \mathbb{C}$.
- 4. (1) State the Riemann mapping theorem.
 - (2) Let U be a simply-connected open and proper subset of \mathbb{C} , and let $f:U\to U$ be a holomorphic bijection. Prove or disprove (i.e. give a counter-example to) the following assertion: if f has two fixed points, then f(z)=z for all $z\in U$.
- 5. Let f(z) be analytic in a domain D. Fix $z_0 \in D$ and let $w_0 = f(z_0)$. Suppose z_0 is a zero of finite order m (i.e. multiplicity m) for $f(z) w_0 = 0$. Show that there exist $\delta > 0$ and $\bar{\delta} > 0$ such that for each w with $0 < |w w_0| < \bar{\delta}$, the equation f(z) w = 0 has exactly m distinct solutions inside the disk $|z z_0| < \delta$.