Complex Analysis Qualifying Exam, Fall 2015

The problems count equally. Give clear reasoning and state clearly which theorems you are using. \mathbb{D} denotes the open unit disk in the complex plane \mathbb{C} .

1. Evaluate the integral
$$\int_0^\infty \frac{\cos x}{1+x^4} dx$$
.

- 2. (a) Let $\{f_n\}$ be a sequence of analytic functions on a region Ω in \mathbb{C} and assume that for some function g on Ω , $f_n \to g$ uniformly on compact subsets of Ω . Show that $f'_n \to g'$ uniformly on compact subsets of Ω and that g is analytic on Ω .
 - (b) Explain what part (a) has to do with differentiation of power series.
- 3. Let U be the upper half plane $\{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$ with the slit $\{iy \mid 0 < y \leq 1\}$ removed. Find a conformal equivalence from U to \mathbb{D} .
- 4. Expand the following functions into Laurent series in the indicated regions:

(a)
$$f(z) = \frac{z^2 - 1}{(z+2)(z+3)}, \ 2 < |z| < 3.$$

(b) $g(z) = \sin\left(\frac{z}{1-z}\right), \ 0 < |z-1| < \infty$

- 5. Let f be entire and suppose that $\lim_{z\to\infty} f(z) = \infty$. Show that f is a polynomial.
- 6. Find the number of roots of $z^4 6z + 3 = 0$ in |z| < 1, 1 < |z| < 2, and |z| > 2 respectively.
- 7. Let f(z) be an analytic on \mathbb{D} , with $\operatorname{Re}(f(z)) > 0$, f(0) = a > 0. Show that

$$\left| \frac{f(z) - a}{f(z) + a} \right| \le |z|, \quad |f'(0)| \le 2a.$$