Complex Analysis Prelim

1. Evaluate the following integrals using methods of complex analysis:

a)
$$\int_{0}^{\infty} \ln(x)/(1+x^2) dx$$
 b) $\int_{0}^{2\pi} 1/(3+2\cos(\theta)) d\theta$

- 2. a) Compute the Taylor series expansion of $f(z) = e^z/(1+z^2)$ about 0 converging in the disc |z| < 1, and its Laurent series expansion about 0 converging in the annulus |z| > 1.
- b) Let Γ be the rectangle with corners at $(0, \pm 2)$, $(2, \pm 2)$, traversed counterclockwise, and let $w = f(z) = z^5 1$. Compute

$$(2\pi i)^{-1} \int_{f(\Gamma)} 1/w \ dw.$$

- 3. a) Show that the power series $\sum_{n=0}^{\infty} z^{2^n}$ converges for |z| < 1, and cannot be analytically continued beyond the circle C(0,1).
 - b) Describe the Riemann surface of the multi-valued function

$$w = \sqrt{z(z^2 - 1)}.$$

4. a) Give Goursat's proof of the following version of Cauchy's theorem:

If $R \subseteq \mathbb{C}$ is a rectangle, if f(z) is defined in a neighborhood of R, and if f'(z) exists for all $z \in R$, then $\int_{\partial R} f(z)dz = 0$.

- b) State the Fundamental Theorem of Algebra, and give any proof of it using complex analysis.
- 5. a) Let $D = \{z \in \mathbb{C} : -\pi/2 < \text{Re}(z) < \pi/2, \text{Im}(z) > 0\}$. Describe the image of D under the map $w = \sin(z)$.
- b) Let $D = \{z \in \mathbb{C} : |z + \mathbf{1}| < \sqrt{2}, \text{Im}(z) > 0\}$. Exhibit a conformal mapping taking D to the upper halfplane, whose extension to ∂D fixes the points -1, 0, 1.