Ph.D. Preliminary Exam in Complex Analysis, Spring 1998.

1. Let

$$V = \{ f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \mid f(x,y) = (a_1 x^2 + b_1 xy + c_1 y^2, a_2 x^2 + b_2 xy + c_2 y^2), a_1, b_1, c_1, a_2, b_2, c_2 \in \mathbb{R} \} .$$

- a) Identifying \mathbb{R}^2 with \mathbb{C} in the usual way, $(x,y) \mapsto x + iy$, give a basis over \mathbb{R} for the subspace of V consisting of holomorphic functions.
- b) Give a basis over $\mathbb C$ for the subspace of V consisting of holomorphic functions.
- 2. Use the residue theorem to compute $\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^2} dx.$
- 3. Given a > 0, let C_a denote the circle with diameter along the y-axis, passing through 0 and ia. Let R denote the region inside C_2 and outside C_1 . Give a 1-1 conformal mapping from R onto the upper half-plane.
- 4. a) Let γ denote the circle centered at 0 with radius 7, oriented counterclockwise. Compute $\int_{\gamma} \frac{dz}{\sqrt{1-z^2}}$, with $\sqrt{1-z^2}$ normalized to be positive at 7i.
- b) Let $\mathcal{U} \subset \mathbb{C}$ denote the complement of the set $\{x \in \mathbb{R} \mid |x| \geq 1\}$. Show that there is a branch of $\arcsin(z)$ defined on \mathcal{U} , i.e., a function g(z) such that $\sin(g(z)) = z$.
- 5. Given an integer n > 1, let $p(z) = z^n z 1$, and let r denote the unique positive root of p(z). Show that all the roots of p(z) lie in the disk $|z| \le r$.

6. a) Establish the identity
$$\pi^2 \csc^2(\pi z) = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2}$$
.

b) Compute
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
.

- 7. a) Say what it means for a family of analytic functions on a region G to be normal.
- b) Let D denote the open unit disk, and let \mathcal{F} be a family of analytic functions on D. Assume there is an analytic function g(z) defined on D, such that for all integers $m \geq 0$ and all $f \in \mathcal{F}$, $|f^{(m)}(0)| \leq |g^{(m)}(0)|$. Prove that \mathcal{F} is normal.
- 8. Let $\Lambda \subset \mathbb{C}$ be a lattice. Let $w \in \mathbb{C}$ and let φ be a harmonic function defined on the complement of $w + \Lambda$ in \mathbb{C} . Assume φ is periodic with respect to Λ .
- a) Prove that if φ has at worst a logarithmic singularity at w, i.e.,

$$\varphi(z) = c \log((z - w)(\bar{z} - \bar{w})) + \psi ,$$

where c is a constant and ψ is continuous at w, then φ is constant. (Consider $\frac{\partial \varphi}{\partial z}$.)

- b) Prove that there exist holomorphic functions f and g defined on the complement of $w + \Lambda$ in \mathbb{C} , such that $\varphi = f + \bar{g}$.
- c) Prove or disprove: If φ has at worst a first order pole at w, i.e.,

$$\varphi(z) = \frac{a}{z - w} + \frac{b}{\bar{z} - \bar{w}} + c \log((z - w)(\bar{z} - \bar{w})) + \psi ,$$

where a, b and c are constants and ψ is continuous at w, then φ is constant.