Analysis Qualifying Exam: Complex Analysis

Spring 2006

Show work and carefully justify/prove your assertions.

- 1. (1) Let a > 0. Evaluate $\int_0^\infty \frac{x \sin x}{x^2 + a^2} dx$ using complex contour integral. Justify all steps.
 - (2) Let a < 0. Based on (1), give a formula for $\int_0^\infty \frac{x \sin x}{x^2 + a^2} dx$ without going into the steps as in (1) and briefly explain why the formula is correct.
- 2. Prove that if f(z) is an analytic function in the complex plane \mathbb{C} such that its real part Re(f(z)) is a polynomial in x, y, then f(z) is a polynomial in z, i.e.,

$$f(z) = c_0 + c_1 z + ... + c_m z^m$$

for some complex constants $c_0, c_1, ..., c_m$, where z = x + iy.

- 3. Give two different proofs of the fundamental theorem of algebra using methods in complex analysis (other methods will not count).
- 4. (a) Interpret what the following assertion means: "The series

$$f(z) = \sum_{n=1}^{\infty} \frac{1}{n^z}$$

defines an analytic function in Re(z) > 1."

- (b) Prove the assertion in (a).
- 5. Let $a_n(z)$ be a sequence of analytic functions on the unit disk D:|z|<1 such that $\sum_{n=0}^{\infty}|a_n(z)|$ converges uniformly on bounded and closed subsets of D. Show that $\sum_{n=0}^{\infty}|a'_n(z)|$ converges uniformly on bounded and closed subsets of D.