Algebra Preliminary Examination–1995

- 1. Let $GL_2(q)$ denote the group of invertible 2×2 matrices with entries in the field \mathbb{F}_q . Prove that there are q + 1 one-dimensional subspaces of \mathbb{F}_q^2 and that the map $GL_2(q) \to S_{q+1}$ defined by $T \to G_T$ where $G_T(\langle v \rangle) = \langle Tv \rangle$, for $0 \neq v \in \mathbb{F}_q^2$ is a homomorphism from $GL_2(q)$ to S_{q+1} . Identify the kernel of this map. When q = 2, 3, and 4 identify the image as a subgroup of S_{q+1} .
- Let η be a primitive 9th root of 1. Let G be the group of automorphisms of Q(η). Show that G permutes the powers of η, and identify G. Find α, β in Q(η) such that [Q(α) : Q] = 2, [Q(β) : Q] = 3. Identify the groups of automorphisms of Q(α) and Q(β), and find the minimal polynomial of α and β.
- 3. (a) Let P be a p-Sylow subgroup of a finite group G, and let $N = N_G(P)$ be its normalizer. Prove that $N_G(N) = N$.
 - (b) Classify all finite groups of order 55.
- 4. Prove that a Euclidean domain is a Unique Factorization Domain.
- 5. Prove that, as a \mathbb{Z} -module, \mathbb{Q} is flat but not projective. (Recall that a right *R*-module *M* is flat if $M \otimes_R -$ is an exact functor.)
- 6. Let M be a $\mathbb{Q}[x]$ -module with generators v_1, v_2, v_3, v_4, v_5 and relations: $xv_1 = 3v_1 + v_2$; $xv_2 = -v_1 + v_2$; $xv_3 = v_3 + v_5$; $xv_4 = 2v_4$; $xv_5 = v_5$. Show how M can be written as a direct sum of $\mathbb{Q}[x]$ -modules each of which is isomorphic to $\mathbb{Q}[x]/(f(x))$ for some $f(x) \in \mathbb{Q}[x]$ by explicitly finding the polynomials f(x). Find the invariant factors and elementary divisors of M and the minimal polynomial of the corresponding linear transformation.
- 7. (a) Let α and β be complex numbers which are algebraic over \mathbb{Q} . Prove that $\alpha + \beta$ is also algebraic over \mathbb{Q} .
 - (b) Prove that the multiplicative group of non-zero elements of a finite field is cyclic.