Preliminary Exam in Algebra

Sept. 1997

Do as many problems as you can; each problem is worth 10 points. The number of problems done **completely** will also be taken into account: one correct problem is better than two half-done problems.

1. Let $f(x) = x^3 - 4x + 2 \in \mathbb{Q}[x]$.

- (a) Show that f(x) is irreducible in $\mathbb{Q}[x]$.
- (b) Determine the Galois group G of f over \mathbb{Q} .
- (c) Compute the degree $[K:\mathbb{Q}]$, where K is the splitting field of f(x) over \mathbb{Q} .
- (d) How many intermediate fields are there between \mathbb{Q} and K? Explain.
- (e) Prove that $K \subset \mathbb{R}$.

2. Let

$$A = \left[\begin{array}{rrrr} -1 & 0 & 0 \\ -3 & 1 & 1 \\ 6 & -4 & -3 \end{array} \right].$$

- (a) Find the Jordan canonical form J of A.
- (b) Find an invertible matrix P such that $P^{-1}AP = J$. (You should not need to compute P^{-1} .)
- 3. (a) State the three Sylow theorems.
 - (b) Prove that there is no simple group of order 108.
- 4. Prove that every group of order 45 is abelian. How many (nonisomorphic) groups of order 45 are there? Write down exactly one group from each isomorphism class.
- 5. Let $\sigma \in S_n$ where $n \ge 2$ and $\sigma \ne$ identity. Prove that it is possible to write σ as a product of n-1 or fewer transpositions. Moreover, if σ is not a *n*-cycle, then σ can be written as a product of n-2 or fewer transpositions.
- 6. A ring R (with 1) is called **simple** if its only (2-sided) ideals are (0) and R. The **center** of R is the subset

$$Z = z \in R | zr = rz \forall r \in R.$$

Prove that the center of a simple ring is a field.

- 7. (a) Define "algebraic closure" of a field.
 - (b) Prove that every field has an algebraic closure.

- 8. Let F be a field of prime characteristic p.
 - (a) Prove that the map $\phi: F \to F, \phi(\alpha) = \alpha^p$, is a (ring) homomorphism. F is called **perfect** if ϕ is surjective.
 - (b) Show that every finite field is perfect.
 - (c) If F is any field of characteristic p, and x is an indeterminate, prove that F(x) is **not** perfect.
- 9. The **affine group** \mathcal{A}_n is the group of motions of \mathbb{R}^n generated by $GL_n(\mathbb{R})$ together with the group \mathcal{T}_n of translations: $t_a(x) = x + a$ $(a, x \in \mathbb{R}^n)$. Prove that \mathcal{T}_n is a normal subgroup of \mathcal{A}_n , and that $\mathcal{A}_n/\mathcal{T}_n \simeq GL_n(\mathbb{R})$.